The Orbiting Carbon Observatory (OCO) mission was selected by NASA's Office of Earth Science as the fifth mission in its Earth System Science Pathfinder (ESSP) Program. OCO will make the first global, space-based measurements of atmospheric CO 2 with the precision, resolution, and coverage needed to characterize sources and sinks of this important green-house gas. These measurements will improve our ability to forecast CO 2 -induced climate change. OCO will fly in a 1:15 PM sun-synchronous orbit, sharing its ground track with the Earth Observing System (EOS) Aqua platform. It will carry high-resolution spectrometers to measure reflected sunlight in the molecular oxygen (O 2 ) A-band at 0.76 m and the CO 2 bands at 1.61 and 2.06 m to retrieve the column-averaged CO 2 dry air mole fraction, X CO 2 . A comprehensive validation and correlative measurement program has been incorporated into this mission to ensure that X CO 2 can be retrieved with precisions of 0.3% (1 ppm) on regional scales.
The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO 2 . Its main purpose is to allow inversions of net flux estimates of CO 2 on regional to continental scales using the total column CO 2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 μm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies. We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO 2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.
Abstract. The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the columnaveraged carbon dioxide (CO 2 ) dry air mole fraction (X CO 2 ) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) X CO 2 retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O 2 A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO 2 and H 2 O column abundances using observations taken at 1.61 µm (weak CO 2 band) and 2.06 µm (strong CO 2 band), while neglecting atmospheric scattering. The CO 2 and H 2 O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set.To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of 20-25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April-May) for OCO-2 nadir-land, glint-land and glint-water observations.No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near Published by Copernicus Publications on behalf of the Europ...
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are naturally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Autofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spatial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7x7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which samples to collect and cache for Mars sample return.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2), launched on 2 July 2014, is a NASA mission designed to measure the column-averaged CO 2 dry air mole fraction, X CO 2 . Towards that goal, it will collect spectra of reflected sunlight in narrow spectral ranges centered at 0.76, 1.6 and 2.0 µm with a resolving power (λ/ λ) of 20 000. These spectra will be used in an optimal estimation framework to retrieve X CO 2 . About 100 000 cloud free soundings of X CO 2 each day will allow estimates of net CO 2 fluxes on regional to continental scales to be determined. Here, we evaluate the OCO-2 spectrometer performance using pre-launch data acquired during instrument thermal vacuum tests in April 2012. A heliostat and a diffuser plate were used to feed direct sunlight into the OCO-2 instrument and spectra were recorded. These spectra were compared to those collected concurrently from a nearby high-resolution Fourier Transform Spectrometer that was part of the Total Carbon Column Observing Network (TCCON). Using the launch-ready OCO-2 calibration and spectroscopic parameters, we performed total column scaling fits to all spectral bands and compared these to TCCON results. On 20 April, we detected a CO 2 plume from the Los Angeles basin at the JPL site with strongly enhanced short-term variability on the order of 1 % (3-4 ppm). We also found good (< 0.5 ppm) inter-footprint consistency in retrieved X CO 2 . The variations in spectral fitting residuals are consistent with signal-to-noise estimates from instrument calibration, while average residuals are systematic and mostly attributable to remaining errors in our knowledge of the CO 2 and O 2 spectroscopic parameters. A few remaining inconsistencies observed during the tests may be attributable to the specific instrument setup on the ground and will be re-evaluated with in-orbit data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.