The Cyclone Global Navigation Satellite System (CYGNSS) is a new NASA earth science mission scheduled to be launched in 2016 that focuses on tropical cyclones (TCs) and tropical convection. The mission’s two primary objectives are the measurement of ocean surface wind speed with sufficient temporal resolution to resolve short-time-scale processes such as the rapid intensification phase of TC development and the ability of the surface measurements to penetrate through the extremely high precipitation rates typically encountered in the TC inner core. The mission’s goal is to support significant improvements in our ability to forecast TC track, intensity, and storm surge through better observations and, ultimately, better understanding of inner-core processes. CYGNSS meets its temporal sampling objective by deploying a constellation of eight satellites. Its ability to see through heavy precipitation is enabled by its operation as a bistatic radar using low-frequency GPS signals. The mission will deploy an eight-spacecraft constellation in a low-inclination (35°) circular orbit to maximize coverage and sampling in the tropics. Each CYGNSS spacecraft carries a four-channel radar receiver that measures GPS navigation signals scattered by the ocean surface. The mission will measure inner-core surface winds with high temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of TC wind speeds.
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance ofGNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.