Context In contrast with other respiratory viruses, children infected with SARS-CoV-2 are largely spared from severe COVID-19. Objectives To critically assess age-related differences in three host proteins involved in SARS-CoV-2 cellular entry: angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin. Methods We systematically searched Medline, Embase, and PubMed databases for relevant publications. Studies were eligible if they evaluated ACE2, TMPRSS2 or furin expression, methylation, or protein level in children. Results Sixteen papers were included. Age-dependent differences in membrane-bound and soluble ACE2 were shown in several studies, with ACE2 expression increasing with age. TMPRSS2 and furin are key proteases involved in SARS-CoV-2 spike protein cleavage. TMPRSS2 expression is increased by circulating androgens and is thus low in pre-pubertal children. Furin has not currently been well researched. Limitations High levels of study heterogeneity. Conclusions Low expression of key host proteins may partially explain the reduced incidence of severe COVID-19 among children, although further research is needed.
Background Normally functioning airway cilia is essential for efficient mucociliary clearance to protect the airway from various insults. Impaired clearance may lead to increased risk of infections and progressive lung damage. Significant morbidity in the immediate post lung transplantation period is associated with airway infection, which we hypothesize may be caused by impaired cilia function. Methods Airway cilia beating pattern (CBP) and frequency (CBF) were studied on brushing samples taken from above and below the transplant anastomosis of adult lung transplant recipients (n = 20) during routine bronchoscopies at 6, 12, and 26 weeks posttransplant. Bronchoaveolar Lavage (BAL) samples were also collected at each time points. Results At 6 weeks posttransplant (n = 16), CBP from the donated lung showed reduced beating amplitude with the overall CBF 2.28 Hz slower than the patients' native upper airway cilia (median ± SIQR: 5.36 ± 0.93 Hz vs. 7.64 ± 0.92 Hz, p value < .001). At 12 weeks (n = 16), donor lungs CBP showed recovery with the difference in CBF reduced to 0.74 Hz (6.36 ± 1.46 Hz vs. 7.10 ± 0.86 Hz, p value < .05). Impaired cilia function was not associated with positive BAL cultures. Conclusion Reduced cilia function is evident in the first 12 weeks post lung transplant, with both CBP and CBF returning to levels of function indistinguishable to the patients' upper airway cilia beyond this time.
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.