Introduces a new analytical review procedure that measures the degree to which a data set’s digit distribution deviates from a Benford digit distribution. This deviation can indicate potential manipulation and can be used to signal the need for further audit testing. An artificial neural network is used to distinguish between “normal” and “manipulated” financial data. The results show that if data have been contaminated (at a 10 per cent level or more) a Benford analytical review procedure will detect this 68 per cent of the time. If the data are not contaminated, the test will indicate that the data are “clean” 67 per cent of the time. Because analytical review procedures are not used in isolation, these results probably understate the effectiveness and potential of a digits‐based analytical review procedure. This procedure’s fraud detection results compare favorably to traditional analytical review procedures. Importantly, its unique analysis procedure allows it to complement traditional analytical review procedures. A key limitation of this study is that it uses simulated data, rather than actual data. Such an enhancement will be a critical step in future research. This method appears to have potential merit and provides many opportunities for new research.
Artificial neural networks are a robust, effective complement to traditional statistical methods in financial applications. They can incorporate qualitative and quantitative information, and recognize underlying patterns and trends in large, complex data sets. This paper applies a neural network model to identify potential acquisition targets. The model incorporates various factors based on acquisition theories suggested in the literature. The resulting neural network model exhibits a highly successful prediction rate and a portfolio of predicted target stocks identified by the network substantially outperformed the market.
To support the creation, editing, storage, retrieval, and transmission of electronic multimedia documents, a system must maintain and manage complex, nonhierarchical relationships among the documents and their constituent components. A basic set of high level object classes that can be used in a hybrid object oriented development environment to represent complex documents, their constituent parts, and interrelationships is presented. These object classes are intended to provide a stable base for development of a PC-based document management system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.