The catalytic DNA circuits play a critical role in engineered biological systems and molecular information processing. Actually, some of the natural or synthetic DNA circuits were triggered by covalent modifications, where conformational changes were induced to facilitate complex DNA engineering functions and signal transmissions. However, most of the reported artificial catalytic DNA circuits were regulated by the toehold-mediated reaction. Therefore, it is significant to propose a strategy to regulate the catalytic DNA circuit not only by the toehold-mediated mechanism, but also by involving the conformational changes induced by the covalent modification. In this study, we developed the catalytic DNA logic circuits regulated by DNAzyme. Here, a regulation strategy based on the covalent modification was proposed to control the DNA circuit, combing two reaction mechanisms: DNAzyme digestion and entropy-driven strand displacement. The DNAzyme and DNA catalyst can participate into the reactions alternatively, thus realizing the cascading catalytic circuits. Using the DNAzyme regulation, a series of logic gates (YES, OR and AND) were constructed. In addition, a two-layer cascading circuit and a feedback self-catalysis circuit were also established. The proposed DNAzyme-regulated strategy shows great potentials as a reliable and feasible method for constructing more complex catalytic DNA circuits.
Methods for conjugating DNA to gold nanoparticles (AuNPs) have recently attracted considerable attention. The ability to control such conjugation in a programmable way is of great interest. Here, we have developed a logic-based method for manipulating the conjugation of thiolated DNA species to AuNPs via cascading DNA strand displacement. Using this method, several logic-based operation systems are established and up to three kinds of DNA signals are introduced at the same time. In addition, a more sensitive catalytic logic-based operation is also achieved based on an entropy-driven process. In the experiment, all of the DNA/AuNPs conjugation results are verified by agrose gel. This strategy promises great potential for automatically conjugating DNA stands onto label-free gold nanoparticles and can be extended to constructing DNA/nanoparticle devices for applications in diagnostics, biosensing, and molecular robotics.
The neuron model regulated by DNAzymes is simple to construct and possesses strong scalability, having great potential for use in the construction of large neural networks.
Conformational cooperativity is a universal molecular effect mechanism and plays a critical role in signaling pathways. However, it remains a challenge to develop artificial molecular networks regulated by conformational cooperativity, due to the difficulties in programming and controlling multiple structural interactions. Herein, we develop a cooperative strategy by programming multiple conformational signals, rather than chemical signals, to regulate protein-oligonucleotide signal transduction, taking advantage of the programmability of allosteric DNA constructs. We generate a cooperative regulation mechanism, by which increasing the loop lengths at two different structural modules induced the opposite effects manifesting as down- and up-regulation. We implement allosteric logic operations by using two different proteins. Further, in cell culture we demonstrate the feasibility of this strategy to cooperatively regulate gene expression of PLK1 to inhibit tumor cell proliferation, responding to orthogonal protein-signal stimulation. This programmable conformational cooperativity paradigm has potential applications in the related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.