Summary
The application of horizontal-well drilling and multistage fracturing has become a norm in the industry to develop unconventional resources from ultratight formations. A complex fracture network generated in the presence of stress isotropy and pre-existing natural fractures immensely extends reservoir contact and improves hydrocarbon production.
A semianalytical method is presented in this paper to simulate the production from such a complex fracture network. This method combines an analytical reservoir solution with a numerical solution on discretized fracture panels. The mathematics is briefly introduced. Numerous case studies are presented, from a simple planar fracture to a real-field example from the Barnett shale. Production behavior and the key flow regimes are discussed.
With its simplicity, yet capturing the physics of the transient-production performance, this approach provides an accessible tool for people from multiple disciplines in unconventional-resource development to rapidly evaluate treated-well productivity and stimulation effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.