Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2. In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype.
Rationale: Pulmonary hypertension (PH) is characterized by progressive increase in pulmonary artery pressure leading to right ventricular (RV) hypertrophy, RV failure, and death. Current treatments only temporarily reduce severity of the disease, and an ideal therapy is still lacking. Objectives: Estrogen pretreatment has been shown to attenuate development of PH. Because PH is not often diagnosed early, we examined if estrogen can rescue preexisting advanced PH. Methods: PH was induced in male rats with monocrotaline (60 mg/kg). At Day 21, rats were either treated with 17-b estradiol or estrogen (E2, 42.5 mg/kg/d), estrogen receptor-b agonist (diarylpropionitrile, 850 mg/kg/d), or estrogen receptor a-agonist (4,4',4"-[4-Propyl-(1H)-pyrazole-1,3,5-triyl] trisphenol, 850 mg/kg/d) for 10 days or left untreated to develop RV failure. Serial echocardiography, cardiac catheterization, immunohistochemistry, Western blot, and real-time polymerase chain reaction were performed. Measurements and Main Results: Estrogen therapy prevented progression of PH to RV failure and restored lung and RV structure and function. This restoration was maintained even after removal of estrogen at Day 30, resulting in 100% survival at Day 42. Estradiol treatment restored the loss of blood vessels in the lungs and RV. In the presence of angiogenesis inhibitor TNP-470 (30 mg/kg) or estrogen receptor-b antagonist (PHTPP, 850 mg/kg/d), estrogen failed to rescue PH. Estrogen receptor-b selective agonist was as effective as estrogen in rescuing PH. Conclusions: Estrogen rescues preexisting severe PH in rats by restoring lung and RV structure and function that are maintained even after removal of estrogen. Estrogen-induced rescue of PH is associated with stimulation of cardiopulmonary neoangiogenesis, suppression of inflammation, fibrosis, and RV hypertrophy. Furthermore, estrogen rescue is likely mediated through estrogen receptor-b.Keywords: pulmonary hypertension; estrogen; neoangiogenesis; estrogen receptors; inflammation Pulmonary hypertension (PH) is a chronic lung disease characterized by pulmonary vascular remodeling and progressive increase in pulmonary artery pressure leading to right ventricular (RV) hypertrophy and RV failure (RVF). End-stage RVF has long been regarded as a terminal state of pathological cardiopulmonary remodeling, including fibrosis and chamber dilation, being unresponsive to available therapies. Advanced PH is most often treated with aggressive nonpharmacological therapies, such as lung transplantation, but this approach is only feasible for a fraction of patients. In the past decade, cell and gene therapies have shown great potential for treatment of PH in animal models (1, 2) and humans (3). However, effective pharmacological therapy for treatment of patients with advanced PH would be much more practical and much more cost effective. Several agents have been identified to attenuate the development of PH when the therapy is started before the initiating stimuli (4-6). Unfortunately, up to now, there has been no id...
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIPsequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesodermendoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life. lung development | heart development | TBX5 | Wnt signaling | Hedgehog signaling
We recently described a new class of long noncoding RNA defined by especially tight chromatin association, whose presence is strongly correlated with expression of nearby genes in HEK293 cells. Here we critically examine the generality and cis-enhancer mechanism of this class of chromatin enriched RNA (cheRNA). CheRNA are largely cell-type specific, and remain the most effective chromatin signature for predicting cis-gene transcription in all cell types examined. Targeted depletion of three cheRNAs decreases gene expression of their neighbors, indicating potential co-activator function. Single-molecule FISH of one cheRNA-distal target gene pair suggests spatial overlap consistent with a role in chromosome looping. In another example, the cheRNA HIDALGO stimulates the fetal hemoglobin HBG1 gene during erythroid differentiation by promoting contacts to a downstream enhancer. Our results suggest that many cheRNAs activate proximal, lineage-specific gene transcription.
The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5-mutant mouse atria, identifying ~2600 novel Tbx5-dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5-dependent ncRNA transcription provided a quantitative metric of Tbx5-dependent enhancer activity, correlating with target gene expression. We identified RACER, a novel Tbx5-dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2. We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.