PCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PCBs to replace human vision to make it easier and can save costs. This tool is equipped with the help of a Logitech c920 Webcam and a Raspberry Pi 3b+ microprocessor which is used to store and run programs that have been created on Python programming software, so this tool can be used portablely. With these two technologies, Image Processing can be used to detect objects with the OpenCv library and Google Colab. PCB defect detection tool with the help of Image Processing uses yolo convolutional neural network method to help determine path damage on the PCB. You Only Look Once (YOLO) algorithm with five detection classifications, namely short, open circuit, missing hole, mouse bite, and spur. From the results of the study, the results were obtained that the YOLO algorithm was able to detect these five classifications with a value of mAP@0.5 short 90.67%, open circuit 97.86%, Mouse Bite 94.43%, Missing Hole 96.09%, and spur 97.56%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.