Background Virtual reality (VR) has been broadly applied in post-stroke rehabilitation. However, studies on occupational performance and self-efficacy as primary outcomes of stroke rehabilitation using VR are lacking. Thus, this study aims to investigate the effects of VR training on occupational performance and self-efficacy in patients with stroke. Methods This was an assessor-blinded, randomized controlled trial. Sixty participants with first-ever stroke (< 1-year onset) underwent rehabilitation in a single acute hospital. Participants were randomly assigned to either the VR group (n = 30) or control group (n = 30). Both groups received dose-matched conventional rehabilitation (i.e., 45 min, five times per week over 3 weeks). The VR group received additional 45-min VR training for five weekdays over 3 weeks. The primary outcome measures were the Canadian Occupational Performance Measure and Stroke Self-Efficacy Questionnaire. Secondary outcome measures included Modified Barthel Index, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity. The assessment was conducted at baseline and after the 3-week intervention. Results A total of 52 participants (86.7%) completed the trial. Significant between-group differences in Stroke Self-Efficacy Questionnaire (Median Difference = 8, P = 0.043) and Modified Barthel Index (Median Difference = 10, P = 0.030) were found; however, no significant between-group differences in Canadian Occupational Performance Measure, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity were noted. No serious adverse reactions related to the program were reported. Conclusions Additional VR training could help improve the self-efficacy and activities of daily living of patients with stroke; however, it was not superior to conventional training in the improvement of upper limb functions, occupational performance, and satisfaction. Nevertheless, VR could be integrated into conventional rehabilitation programs to enhance self-efficacy of patients after stroke. Trial registration This study was successfully registered under the title “Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke” on October 13 2019 and could be located in https://www.chictr.org with the study identifier ChiCTR1900026550.
Background—Virtual reality (VR) has been broadly applied in post-stroke rehabilitation. However, studies on occupational performance and self-efficacy as primary outcomes of stroke rehabilitation using VR are lacking. Thus, this study aims to investigate the effects of VR training on occupational performance and self-efficacy in patients with stroke.Methods—This was an assessor-blinded, randomized controlled trial. Sixty participants with first-ever stroke (< 1-year onset) underwent rehabilitation in a single acute hospital. Participants were randomly assigned to either the VR group (n = 30) or control group (n = 30). Both groups received dose-matched conventional rehabilitation (i.e., 45 min, five times per week over 3 weeks). The VR group received additional 45-min VR training for five weekdays over 3 weeks. The primary outcome measures were the Canadian Occupational Performance Measure and Stroke Self-Efficacy Questionnaire. Secondary outcome measures included Modified Barthel Index, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity. The assessment was conducted at baseline and after the 3-week intervention.Results—A total of 52 participants (86.7%) completed the trial. Significant between-group differences in Stroke Self-Efficacy Questionnaire (Median Difference = 8, P = 0.043) and Modified Barthel Index (Median Difference = 10, P = 0.030) were found; however, no significant between-group differences in Canadian Occupational Performance Measure, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity were noted. No serious adverse reactions related to the program were reported.Conclusions—Additional VR training could help improve the self-efficacy and activities of daily living of patients with stroke; however, it was not superior to conventional training in the improvement of upper limb functions, occupational performance, and satisfaction. Nevertheless, VR could be integrated into conventional rehabilitation programs to enhance self-efficacy of patients after stroke.Trial Registration—This study was successfully registered under the title “Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke” on October 13 2019 and could be located in http://www.chictr.org with the study identifier ChiCTR1900026550.
Background —Virtual reality (VR) has been broadly applied in post-stroke rehabilitation. However, studies on occupational performance and self-efficacy as primary outcomes of stroke rehabilitation using VR are lacking. Thus, this study aims to investigate the effects of VR training on occupational performance and self-efficacy in patients with stroke. Methods —This was an assessor-blinded, randomized controlled trial. Sixty participants with first-ever stroke (< 1-year onset) underwent rehabilitation in a single acute hospital. Participants were randomly assigned to either the VR group (n = 30) or control group (n = 30). Both groups received dose-matched conventional rehabilitation (i.e., 45 min, five times per week over 3 weeks). The VR group received additional 45-min VR training for five weekdays over 3 weeks. The primary outcome measures were the Canadian Occupational Performance Measure and Stroke Self-Efficacy Questionnaire. Secondary outcome measures included Modified Barthel Index, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity. The assessment was conducted at baseline and after the 3-week intervention. Results —A total of 52 participants (86.7%) completed the trial. Significant between-group differences in Stroke Self-Efficacy Questionnaire (P = 0.043) and Modified Barthel Index (P = 0.030) were found; however, no significant between-group differences in Canadian Occupational Performance Measure, Fugl-Meyer Assessment-Upper Extremity, and Functional Test for the Hemiplegic Upper Extremity were noted. No serious adverse reactions related to the program were reported. Conclusions —Additional VR training could help improve the self-efficacy and activities of daily living of patients with stroke; however, it was not superior to conventional training in the improvement of upper limb functions, occupational performance, and satisfaction. Nevertheless, VR could be integrated into conventional rehabilitation programs to enhance self-efficacy of patients after stroke. Trial Registration - This study was successfully registered under the title “Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke” on October 13 2019 and could be located in http://www.chictr.org with the study identifier ChiCTR1900026550.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.