This research is focused on gully erosion mapping and monitoring at multiple spatial scales using multi-source remote sensing data of the Sancha River catchment in Northeast China, where gullies extend over a vast area. A high resolution satellite image (Pleiades 1A, 0.7 m) was used to obtain the spatial distribution of the gullies of the overall basin. Image visual interpretation with field verification was employed to map the geometric gully features and evaluate gully erosion as well as the topographic differentiation characteristics. Unmanned Aerial Vehicle (UAV) remote sensing data and the 3D photo-reconstruction method were employed for detailed gully mapping at a site scale. The results showed that: (1) the sub-meter image showed a strong ability in the recognition of various gully types and obtained satisfactory results, and the topographic factors of elevation, slope and slope aspects exerted significant influence on the gully spatial distribution at the catchment scale; and (2) at a more detailed site scale, UAV imagery combined with 3D photo-reconstruction provided a Digital Surface Model (DSM) and ortho-image at the centimeter level as well as a detailed 3D model. The resulting products revealed the area of agricultural utilization and its shaping by human agricultural activities and water erosion in detail, and also provided the gully volume. The present study indicates that using multi-source remote sensing data, including satellite and UAV imagery simultaneously, results in an effective assessment of gully erosion over multiple spatial scales. The combined approach should be continued to regularly monitor gully erosion to understand the erosion process and its relationship with the environment from a comprehensive perspective.
Urban green spaces have been shown to decrease land surface temperature (LST) significantly. However, few studies have explored the relationships between urban green spaces and LST across different seasons at different spatial scales. In this study, using Changchun, China as a case study, landscape ecology and comparative approaches were employed quantitatively to investigate the effects of the composition and configuration of urban green spaces on the urban thermal environments. LST maps were retrieved from Landsat 8 Thermal Infrared Sensor (TIRS) data acquired on four dates that represented four different seasons, and detailed information of urban green spaces was extracted from high resolution imagery GF-1. Normalized differential vegetation index (NDVI) and six landscape metrics at patch, class, and landscape level were used to characterize the spatial patterns of urban green spaces. The results showed that urban green spaces did have significant cooling effects in all seasons, except for winter, but the effects varied considerably across the different seasons and green types, and seemed to depend on the NDVI and size of urban green spaces. Compared to shape metrics, the negative relationships between the LST and the area and the NDVI of urban green spaces were more significant. Both the composition and configuration of urban green spaces can affect the distribution of LST. Based on findings with one city, given a fixed area of urban green spaces, the number of green patches can positively or negatively affect the LST, depending on if the number is larger than a threshold or not, and the threshold varies according to the given area. These findings provide new perspectives, and further research is also suggested, to generate a better understanding of how urban green spaces affect the urban thermal environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.