Birch (Betula platyphylla × B. pendula) is an important tree for landscaping due to its attractive white bark and straight trunk. In this study, we characterized a T-DNA yellow-green leaf mutant, yl. We identified six insertion sites (ISs) in the mutant by genome resequencing and found a 40-kb deletion containing BpGLK1 around IS2 on chromosome 2. Complementation experiments with the yl mutant and repression of BpGLK1 in wild-type plants confirmed that BpGLK1 was responsible for the mutated phenotype. Physiological and ultrastructural analyses showed that the leaves of the yl mutant and BpGLK1-repression lines had decreased chlorophyll content and defective chloroplast development compared to the wild-type. Furthermore, the loss function of BpGLK1 also affected photosynthesis in leaves. Transcriptomics, proteomics, and ChIP-PCR analysis revealed that BpGLK1 directly interacted with the promoter of genes related to antenna proteins, chlorophyll biosynthesis, and photosystem subunit synthesis, and regulated their expression. Overall, our research not only provides new insights into the mechanism of chloroplast development and chlorophyll biosynthesis regulated by BpGLK1, but also provides new transgenic birch varieties with various levels of yellowing leaves by repressing BpGLK1 expression.
We investigated the stereoselective degradation kinetics and toxicity of fluroxypyr methylheptyl ester (FPMH) in rat hepatocytes using a chiral high-performance liquid chromatographic method. The T1/2 of (−)-FPMH was about two times longer than that of (+)-FPMH after the rat hepatocytes were incubated with 10, 20, and 50 μM of rac-FPMH. There was no chiral conversion or transformation during their incubation with the hepatocytes. Toxicity differences were observed among the two enantiomers of FPMH and fluroxypyr (FP) in their EC50 values in rat hepatocytes. Of all the tested compounds, FP was most toxic to the rat hepatocytes. The (−)-FPMH enantiomer showed higher toxicity than the (+)-FPMH, whereas the racemic mixture displayed intermediate toxicity. The data presented here are important for a more thorough understanding of this pesticide and should be useful for its full environmental assessment.
Lesion mimic mutants (LMM) usually show spontaneous cell death and enhanced defence responses similar to hypersensitive response (HR) in plants. Many LMM have been reported in rice, wheat, maize, barley, Arabidopsis, etc., but little was reported in xylophyta. BpGH3.5 is an early auxin-response factor which regulates root elongation in birch. Here, we found a T-DNA insertion mutant in a BpGH3.5 transgenic line named lmd showing typical LMM characters and early leaf senescence in Betula platyphylla × B. pendula. lmd showed H2O2 accumulation, increased SA level and enhanced resistance to Alternaria alternate, compared with oe21 (another BpGH3.5 transgenic line) and NT (non-transgenic line). Cellular structure observation showed that programmed cell death occurred in lmd leaves. Stereomicroscope observation and Evans’ blue staining indicated that lmd is a member of initiation class of LMM. Transcriptome analysis indicated that defence response-related pathways were enriched. Southern-blot indicated that there were two insertion sites in lmd genome. Genome re-sequencing and thermal asymmetric interlaced PCR (TAIL-PCR) confirmed the two insertion sites, one of which is a T-DNA insertion in the promoter of BpEIL1 that may account for the lesion mimic phenotype. This study will benefit future research on programmed cell death, HR and disease resistance in woody plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.