In modern society, traffic and transportation and the manufacturing industry and construction industries continuously release large amounts of dust and particles into the atmosphere, which can cause heavy air pollution, leading to health hazards. The haze disaster, a serious problem in developing countries such as China and India, has become one of the main issues of global environmental pollution in recent decades. Many air filtration technologies have been developed. Air filtration using electrospun fibers that intercept fine particles/volatile organic gases/bacterium is a relatively new, but highly promising, technique. Due to their interconnected nanoscale pore structures, highly specific surface areas, fine diameters, and porous structure as well as their ability to incorporate active chemistry on a nanoscale surface, electrospun fibers are becoming a promising versatile platform for air filtration. In this review, following a short introduction concerning the need for air filtration and filtration theory and mechanism, electrospun nanofibers membranes for air filtration have been highlighted, including the preparation (electrospinning process) and the parameters relevant to filtration efficacy. Additionally, various types (function) of the electrospun air filtration membranes have been classified in detail. Furthermore, their potential in the filtration of fine particles and chemical pollutants has been discussed. Finally, the challenges of their practical application and the future prospects have been summarized. Given that some advanced electrospun air filtration nanofibrous membranes exist for treating different contaminants from various types of polluted atmosphere, it is believed that they should make a significant contribution in protection against air pollution.
There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.
This article highlights the properties of stimuli-responsive bio-based polymeric systems and their main intelligent applications.
Interventions and policies for tackling air pollution issues exist and have been proven to be effective. Membrane materials of nanofibrous morphology are attractive for air filtration, and further alleviate the environmental issues. Electrospinning as a simple and versatile way to fabricate ultrafine fibers has been attracting tremendous attention. Herein, the recent researches and future trends of green electrospinning are expounded from the aspects of green degradable materials, green solution electrospinning, and solvent‐free electrospinning. The green degradable materials, including biomass materials, biosynthetic polymer materials, and chemical synthetic materials are reviewed. Following the concept of green electrospinning, electrospun polymer nanofibers via aqueous solution are discussed; additionally, further trends of solvent‐free electrospinning including melt‐electrospinning, anion‐curing electrospinning, UV‐curing electrospinning, thermo‐curing electrospinning, and supercritical CO2‐assisted electrospinning are highlighted. Furthermore, the applications of these electrospun nanofibrous membranes in the field of air filtration are discussed. In the end, the challenges of green electrospinning and future prospects are summarized. The development of green electrospinning is reviewed with an emphasis on current advanced solvent‐free research, where electrospun nanofibrous membranes are contributing to promising treatment strategies to solve environment issue.
Ambient particulate matter (PM) pollution has posed serious threats to global environment and public health. However, high efficient filtration of submicron particles, so named 'secondary pollution' caused by e.g. bacterial growth in filters and the use of non-degradable filter materials, remains a serious challenge. In this study, Polyvinyl alcohol (PVA) and konjac glucomannan (KGM) based nanofiber membranes, loaded with ZnO nanoparticles, were prepared through green electrospinning and eco-friendly thermal crosslinking. Thus obtained fibrous membranes do not only show high-efficient air-filtration performance but also show superior photocatalytic activity and antibacterial activity. The filtration efficiency of the ZnO@PVA/KGM membranes for ultrafine particles (300nm) were higher than 99.99%, being superior to commercial HEPA filters. By virtue of the high photocatalytic activity, the Methyl orange (MO) were efficiently decolorized with a removal efficiency of more than 98% at an initial concentration of 20 mgL-1 under 120 min solar irradiation. The multifunctional membrane with high removal efficiency, low flow resistance, superior photocatalytic activity and antibacterial activity was successfully achieved. It's conceivable that the combination of biodegradable polymer and active metal particle would form
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.