This paper proposes a novel master-slave control strategy for coordination of throttle, wastegate and supercharger actuators in an electrically twincharged engine in order to guarantee efficient boost control during transients, while at steady state a throttle-wastegate coordination provides minimum engine backpressure hence engine efficiency elevation. The benefits and challenges associated with Low Pressure Exhaust Gas Recirculation (LP-EGR) in a baseline turbocharged engine, including improved engine efficiency, mainly due to better combustion phasing, and sluggish engine response to a torque demand due to slowed down air path dynamics were studied and quantified in [1]. Hence in this paper an electrical Eaton TVS roots type supercharger at high pressure side of the turbocharger compressor (TC compressor) is added to the baseline turbocharged engine and the performance of the proposed controller in the presence of LP-EGR, which is a more demanding condition, is evaluated and compared to the turbocharged engine. One dimensional (1D) crankangle resolved engine simulations show that the proposed master-slave control strategy can effectively improve the transient response of the twincharged engine, making it comparable to naturally aspirated engines, while the consumed electrical energy during transients can be recovered from the decreased fuel consumption due to LP-EGR conditions at steady state in approximately 1 second. Finally, a simple controller is developed to bypass the TC compressor and maximize the engine feeding charge during the transients in order to avoid TC compressor choking and achieve faster response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.