Hepatocellular carcinoma (HCC) is one of the most highly lethal malignancies ranking as the third leading-cause of cancer-related death worldwide. Although surgical resection and transplantation are effective curative therapies, very few patients qualify for such treatments due to the advanced stage of the disease at diagnosis. In this context, loco-regional therapies provide a viable therapeutic alternative with minimal systemic toxicity. However, as chemoresistance and tumor recurrence negatively impact the success of therapy resulting in poorer patient outcomes it is imperative to identify new molecular target(s) in cancer cells that could be effectively targeted by novel agents. Recent research has demonstrated that proliferation in HCC is associated with increased glucose metabolism. The glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multifunctional protein primarily recognized for its role in glucose metabolism, has already been shown to affect the proliferative potential of cancer cells. In human HCC, the increased expression of GAPDH is invariably associated with enhanced glycolytic capacity facilitating tumor progression. Though it is not yet known whether GAPDH up-regulation contributes to tumorigenesis sensu stricto, emerging evidence points to the existence of a link between GAPDH up-regulation and the promotion of survival mechanisms in cancer cells as well as chemoresistance. The involvement of GAPDH in several hepatocarcinogenic mechanisms (e.g. viral hepatitis, metabolic alterations) and its sensitivity to a new class of prospective anticancer agents prompted us to review the current understanding of the therapeutic potential of targeting GAPDH in HCC.
The pyruvate analog, 3-bromopyruvate, is an alkylating agent and a potent inhibitor of glycolysis. This antiglycolytic property of 3-bromopyruvate has recently been exploited to target cancer cells, as most tumors depend on glycolysis for their energy requirements. The anticancer effect of 3-bromopyruvate is achieved by depleting intracellular energy (ATP) resulting in tumor cell death. In this review, we will discuss the principal mechanism of action and primary targets of 3-bromopyruvate, and report the impressive antitumor effects of 3-bromopyruvate in multiple animal tumor models. We describe that the primary mechanism of 3-bromopyruvate is via preferential alkylation of GAPDH and that 3-bromopyruvate mediated cell death is linked to generation of free radicals. Research in our laboratory also revealed that 3-bromopyruvate induces endoplasmic reticulum stress, inhibits global protein synthesis further contributing to cancer cell death. Therefore, these and other studies reveal the tremendous potential of 3-bromopyruvate as an anticancer agent.
Lack of an in vitro model of metastasis has been a major impediment in understanding the molecular regulation of metastatic processes, and identification of specific therapeutic targets. We have established an in vitro model which displayed the signatures of metastatic phenotype such as migration, invasiveness, chemoresistance and expression of cancer stem-cell markers. This in vitro model was developed by the induction of reversal of multicellular spheroids that were generated by anchorage-independent growth. In vivo data further validated the metastatic phenotype of the in vitro model. Besides delineating the molecular events of metastasis, this model could also improve the screening efficiency of antimetastatic agents.
Is the alpha-helix structure capable of triggering the formation of aberrant protein aggregates? To answer this question, we investigate the in vitro aggregation of tau protein in the presence of the helix-inducing agent TFE. Tau is a natively unfolded protein that binds to microtubules and forms aggregates in Alzheimer's disease. We find that full-length tau has residual alpha-helix structure, which is further enhanced by three mutations involved in genetic neurological disorders. TFE concentrations matching an alpha-helical content of 40% in full-length tau and the triple mutant induce the formation of aggregates that are morphologically and structurally heterogeneous. A simple dilution experiment reveals that heterogeneity results from the competition between alpha-helical fibrillar aggregates and more classical amyloid-like aggregates. The alpha-helical aggregates are more resilient to dilution and have the spectroscopic features of alpha-helical coiled coils. We propose a general mechanism by which intrinsically stable alpha-helices can associate into aggregates with only coarse coiled-coil symmetry. In tau, high intrinsic alpha-helix stability and coarse coiled-coil symmetry could be byproducts of its biological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.