Abstract:Technological advances have enabled the development of a number of optical fiber sensing methods over the last few years. The most prevalent optical technique involves the use of fiber Bragg grating (FBG) sensors. These small, lightweight sensors have many attributes that enable their use for a number of measurement applications. Although much literature is available regarding the use of FBGs for laboratory level testing, few publications in the public domain exist of their use at the operational level. Therefore, this paper gives an overview of the implementation of FBG sensors for large scale structures and applications. For demonstration, a case study is presented in which FBGs were used to determine the deflected wing shape and the out-of-plane loads of a 5.5-m carbon-composite wing of an ultralight aerial vehicle. The in-plane strains from the 780 FBG sensors were used to obtain the out-of-plane loads as well as the wing shape at various load levels. The calculated out-of-plane displacements and loads were within 4.2% of the measured data. This study demonstrates a practical method in which direct measurements are used to obtain critical parameters from the high distribution of FBG sensors. This procedure can be used to obtain information for structural health monitoring applications to quantify healthy vs. unhealthy structures.
A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a polymer matrix composite under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to develop a residual strength model. The peak values of the analytic cyclic strain history as well as the residual strength model predictions agree well with the experimental data.
An optical fiber-based full-field strain measurement technique was used to investigate delamination growth in laminated composites. An experimental setup to load the test samples under idealized modes of delamination was used to investigate the ability to capture the shape and location of the delamination front. It is envisioned that the demonstrated approach has significant field applications in controlled laboratory settings where delaminations have to be located accurately. Furthermore, the ability of this measurement system to provide full-field strain measurements at any given preimplanted location through the thickness overcomes the surface strain measurements obtained by digital image correlation. In order to demonstrate the technique, distributed fiber optic sensing is used to monitor the propagation of delaminations under pure mode I and II loading. Optical fibers were embedded one ply from the crack plane of both double cantilever beam and end notch flexure specimens. To establish a repeatable fabrication methodology, manufacturing techniques for embedding the optical fibers during the laminate layup process were established. Specimens with and without embedded fibers were tested to verify the fibers did not affect measured fracture toughness values. Crack lengths measured with the optical fibers compared well with true crack lengths, and measured strain distributions compared well with results from finite element analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.