Aims: To synthesize and characterize six caprolactam-based ionic liquids (CPILs) by combination of caprolactam with different organic and inorganic Brønsted acids that can be utilized for lipid extraction from microalgae. Study design: Experimental design include quantitative and qualitative. Place and duration of study: The study was done at Department of Chemistry & Biochemistry, School of Sciences and Aerospace Studies, Moi University (Kenya) between November 2020 and May 2021. Methodology: Six CPILs were prepared through a simple neutralization reaction between Caprolactam and Brønsted acids such as Hydrochloric acid (HCl), Methane sulphonic acid (CH3SO3H), Trifluoromethanesulphonic acid (CF3SO3H), Acetic acid (CH3CO2H), Trifluoroacetic acid (CF3CO2H), and Sulfuric acid (H2SO4). The first three acids were used in the synthesis of CPILs for the first time. The chemical structures of the synthesized CPILs were characterized by Fourier transform infrared and Raman spectroscopy. The densities and viscosities were measured at 20 oC using the weight (pycnometer) and capillary viscometer (Oswald) methods, respectively. Results: All the CPILs were insoluble in hexane and had high miscibility with water and methanol. Fourier transform infrared and Raman spectra of the CPILs were compared with that of free Caprolactam. The characteristic absorption bands of the synthesized compounds showed a big shift in position and/or intensity (compared to caprolactam), indicating the formation of the CPILs. The results showed that both the density and viscosity increased with the molecular weight of the anion - except in Caprolactamium hydrogen sulphate (CPSA)- which could be due to the strong interactions between the cation and anion resulting from the dimerization between hydrogen sulphate anions. Conclusion: The hydrophilic nature of the CPILs indicated by high miscibility with polar solvents (water and methanol) indicates that they are suitable for the dissolution of cellulose of microalgae cell wall and thus could result in high lipid extraction efficiency. Further studies should therefore utilize the synthesized CPILs in lipid extraction from microalgae.
No abstract
Background The main process limitation of microalgae biofuel technology is lack of cost-effective and efficient lipid extraction methods. Thus, the aim of this study was to investigate the effectiveness and efficiency of six caprolactam-based ionic liquids (CPILs) namely, Caprolactamium chloride, Caprolactamium methyl sulphonate, Caprolactamium trifluoromethane sulfonate, Caprolactamium acetate, Caprolactamium hydrogen sulphate and Caprolactamium trifluoromethane-acetate—for extraction of lipids from wet and dry Spirulina platensis microalgae biomass. Of these, the first three are novel CPILs. Methods The caprolactam-based ionic liquids (CPILs) were formed by a combination of caprolactam with different organic and inorganic Brønsted acids, and used for lipid extraction from wet and dry S. platensis microalgae biomass. Extraction of microalgae was performed in a reflux at 95 °C for 2 h using pure CPILs and mixtures of CPIL with methanol (as co-solvent) in a ratio of 1:1 (w/w). The microalgae biomass was mixed with the ILs/ methanol in a ratio of 1:19 (w/w) under magnetic stirring. Results The yield by control experiment from dry and wet biomass was found to be 9.5% and 4.1%, respectively. A lipid recovery of 10% from dry biomass was recorded with both caprolactamium acetate (CPAA) and caprolactamium trifluoroacetate (CPTFA), followed by caprolactamium chloride (CPHA, 9.3 ± 0.1%). When the CPILs were mixed with methanol, observable lipids’ yield enhancement of 14% and 8% (CPAA), 13% and 5% (CPTFA), and 11% and 6% (CPHA) were recorded from dry and wet biomass, respectively. The fatty acid composition showed that C16 and C18 were dominant, and this is comparable to results obtained from the traditional solvent (methanol-hexane) extraction method. The lower level of pigments in the lipids extracted with CPHA and CPTFA is one of the advantages of using CPILs because they lower the cost of biodiesel production by reducing the purification steps. Conclusion In conclusion, the three CPILs, CPAA, CPHA and CPTFA can be considered as promising green solvents in terms of energy and cost saving in the lipid extraction and thus biodiesel production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.