This paper presents an approach based on supervised machine learning methods to discriminate between positive, negative and neutral Arabic reviews in online newswire. The corpus is labeled for subjectivity and sentiment analysis (SSA) at the sentence-level. The model uses both count and TF-IDF representations and apply six machine learning algorithms; Multinomial Naïve Bayes, Support Vector Machines (SVM), Random Forest, Logistic Regression, Multi-layer perceptron and k-nearest neighbors using uni-grams, bi-grams features. With the goal of extracting users' sentiment from written text.Experimental results showed that n-gram features could substantially improve performance; and showed that the Multinomial Naïve Bayes approach is the most accurate in predicting topic polarity. Best results were achieved using count vectors trained by combination of word-based uni-gramsand bi-grams with an overall accuracy of 85.57% over two classes and 65.64% over three classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.