With the growth of online social network platforms and applications, large amounts of textual user-generated content are created daily in the form of comments, reviews, and short-text messages. As a result, users often find it challenging to discover useful information or more on the topic being discussed from such content. Machine learning and natural language processing algorithms are used to analyze the massive amount of textual social media data available online, including topic modeling techniques that have gained popularity in recent years. This paper investigates the topic modeling subject and its common application areas, methods, and tools. Also, we examine and compare five frequently used topic modeling methods, as applied to short textual social data, to show their benefits practically in detecting important topics. These methods are latent semantic analysis, latent Dirichlet allocation, non-negative matrix factorization, random projection, and principal component analysis. Two textual datasets were selected to evaluate the performance of included topic modeling methods based on the topic quality and some standard statistical evaluation metrics, like recall, precision,
F
-score, and topic coherence. As a result, latent Dirichlet allocation and non-negative matrix factorization methods delivered more meaningful extracted topics and obtained good results. The paper sheds light on some common topic modeling methods in a short-text context and provides direction for researchers who seek to apply these methods.
In this paper we address the challenges of adding context-awareness to e-Health systems for students with moderate learning and intellectual disability. Our proposed framework provides a personalized e-Health environment containing contextaware learning media, services and user interface to deal with individuals with disability. The framework adapts accessibility as well as user interfaces dynamically based on user disability. We present the detailed design and implementation of the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.