BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity — the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue‐specific level using 1H‐15N NMR spectroscopy, but is often limited by low signal‐to‐noise at pH>7 and T>293 K. We have developed an improved 13Cα‐13CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic‐resolution information in physiological conditions down to 25 μm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.
Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue‐specific level using 1H‐15N NMR spectroscopy, but is often limited by low signal‐to‐noise at pH>7 and T>293 K. We have developed an improved 13Cα‐13CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic‐resolution information in physiological conditions down to 25 μm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.