Epithelial to mesenchymal transition (EMT) in cancer is the process described where cancer epithelial cells acquire mesenchymal properties which can lead to enhanced invasiveness. Three-dimensional cancer models often lack the relevant and biomimetic microenvironment parameters appropriate to the native tumour microenvironment thought to drive EMT. In this study, HT-29 epithelial colorectal cells were cultivated in different oxygen and collagen concentrations to investigate how these biophysical parameters influenced invasion patterns and EMT. Colorectal HT-29 cells were grown in physiological hypoxia (5% O2) and normoxia (21% O2) in 2D, 3D soft (60 Pa), and 3D stiff (4 kPa) collagen matrices. Physiological hypoxia was sufficient to trigger expression of markers of EMT in the HT-29 cells in 2D by day 7. This is in contrast to a control breast cancer cell line, MDA-MB-231, which expresses a mesenchymal phenotype regardless of the oxygen concentration. In 3D, HT-29 cells invaded more extensively in a stiff matrix environment with corresponding increases in the invasive genes MMP2 and RAE1. This demonstrates that the physiological environment can directly impact HT-29 cells in terms of EMT marker expression and invasion, compared to an established cell line, MDA-MB-231, which has already undergone EMT. This study highlights the importance of the biophysical microenvironment to cancer epithelial cells and how these factors can direct cell behaviour. In particular, that stiffness of the 3D matrix drives greater invasion in HT-29 cells regardless of hypoxia. It is also pertinent that some cell lines (already having undergone EMT) are not as sensitive to the biophysical features of their microenvironment.
OBJECTIVE Despite the disabling deficits of motor apraxia and sensory ataxia resulting from intraoperative injury of the superior thalamocortical tracts (TCTs), region-specific electrophysiological localization is currently lacking. Herein, the authors describe a novel TCT mapping paradigm. METHODS Three patients, 1 asleep and 2 awake, underwent glioma resection affecting primarily the somatosensory cortex and underlying TCT. Stimulation was performed at the median, ulnar, and posterior tibial nerves. Parameters comprised single anodal pulses (duration 200–500 μsec, 2.1–4.7 Hz) with a current ranging from 10 to 25 mA. Recordings were captured with a bipolar stimulation probe, avoiding the classic collision technique. Positive localization sites were used to tractographically reconstruct the TCT in the third case. RESULTS Employing one electrophysiological paradigm, the TCT was localized subcortically in all 3 cases by using a bipolar probe, peak range of 19.6–29.2 msec, trough of 23.3–34.8 msec, stimulation range of 10–25 mA. In the last case, tractographic reconstruction of the TCT validated a highly accurate TCT localization within a specific region of the posterior limb of the internal capsule. CONCLUSIONS The authors describe the first electrophysiological technique for intraoperative localization and protection of the TCT in both asleep and awake craniotomies with tractographic validation, while avoiding the collision paradigm. None of the above paradigms have been previously reported. More data are required to further validate this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.