Current research on computer-aided diagnosis (CAD) of liver cancer is based on traditional feature engineering methods, which have several drawbacks including redundant features and high computational cost. Recent deep learning models overcome these problems by implicitly capturing intricate structures from large-scale medical image data. However, they are still affected by network hyperparameters and topology. Hence, the state of the art in this area can be further optimized by integrating bio-inspired concepts into deep learning models. This work proposes a novel bio-inspired deep learning approach for optimizing predictive results of liver cancer. This approach contributes to the literature in two ways. Firstly, a novel hybrid segmentation algorithm is proposed to extract liver lesions from computed tomography (CT) images using SegNet network, UNet network, and artificial bee colony optimization (ABC), namely, SegNet-UNet-ABC. This algorithm uses the SegNet for separating liver from the abdominal CT scan, then the UNet is used to extract lesions from the liver. In parallel, the ABC algorithm is hybridized with each network to tune its hyperparameters, as they highly affect the segmentation performance. Secondly, a hybrid algorithm of the LeNet-5 model and ABC algorithm, namely, LeNet-5/ABC, is proposed as feature extractor and classifier of liver lesions. The LeNet-5/ABC algorithm uses the ABC to select the optimal topology for constructing the LeNet-5 network, as network structure affects learning time and classification accuracy. For assessing performance of the two proposed algorithms, comparisons have been made to the state-of-the-art algorithms on liver lesion segmentation and classification. The results reveal that the SegNet-UNet-ABC is superior to other compared algorithms regarding Jaccard index, Dice index, correlation coefficient, and convergence time. Moreover, the LeNet-5/ABC algorithm outperforms other algorithms regarding specificity, F1-score, accuracy, and computational time.
Feature selection is a well-known prepossessing procedure, and it is considered a challenging problem in many domains, such as data mining, text mining, medicine, biology, public health, image processing, data clustering, and others. This paper proposes a novel feature selection method, called AOAGA, using an improved metaheuristic optimization method that combines the conventional Arithmetic Optimization Algorithm (AOA) with the Genetic Algorithm (GA) operators. The AOA is a recently proposed optimizer; it has been employed to solve several benchmark and engineering problems and has shown a promising performance. The main aim behind the modification of the AOA is to enhance its search strategies. The conventional version suffers from weaknesses, the local search strategy, and the trade-off between the search strategies. Therefore, the operators of the GA can overcome the shortcomings of the conventional AOA. The proposed AOAGA was evaluated with several well-known benchmark datasets, using several standard evaluation criteria, namely accuracy, number of selected features, and fitness function. Finally, the results were compared with the state-of-the-art techniques to prove the performance of the proposed AOAGA method. Moreover, to further assess the performance of the proposed AOAGA method, two real-world problems containing gene datasets were used. The findings of this paper illustrated that the proposed AOAGA method finds new best solutions for several test cases, and it got promising results compared to other comparative methods published in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.