In this paper, a novel ultra-wideband (UWB) antenna with a planar single-layer structure is proposed. The antenna consists of a main circular patch that is capacitively coupled to six circular patches of very small size relative to the main patch. The coupling is achieved through narrow gaps of semicircular shape which are uniformly distributed on the circumference of the main patch. A coplanar waveguide (CPW) is used for feeding the antenna to get the complete antenna structure with the feeding line printed on one face of a flexible dielectric substrate. The antenna is fabricated and subjected to experimental assessment of its performance regarding the bandwidth, gain, and radiation efficiency. The measurements show good agreement with the simulation results. It is shown that the proposed antenna operates efficiently over the frequency band of 3.1-10.6 GHz. The antenna has a radiation efficiency that ranges from 99% to 100% over the entire band. This high efficiency is attributed to the planar single-layer structure of the antenna and the use of a thin low-loss substrate. The antenna maximum gain ranges from 2 dBi to 5 dBi over the entire frequency band. The substrate material is Rogers RO3003 TM which is flexible and can be conformal to planar and curved surfaces. The total substrate dimensions are 35 × 39.4 × 0.5 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.