Peptides based on unnatural β3-amino acids offer a versatile platform for the design of self-assembling nanostructures due to the folding stability of the 14-helix and the high symmetry of the side chains inherent in this geometry. We have previously described that N-terminal acetylation (Ac-) forms a supramolecular self-assembly motif that allows β3-peptides to assemble head-to-tail into a helical nanorod which then further bundles into hierarchical superstructures. Here we investigate the effect of the topography of the 14-helical nanorod on lateral self-assembly. Specifically, we report on the variations in the superstructure of three isomeric peptides comprising the same three β3-amino acid residues: β3-leucine (L), β3-isoleucine (I) β3-alanine (A) to give peptides Ac-β3[LIA], Ac-β3[IAL] and Ac-β3[ALI]. AFM imaging shows markedly different superstructures for the three peptides. Well defined synchrotron far-infrared spectra reveal uniform geometries with a high degree of similarity between the isomeric peptides in the amide modes of the 400–650 wavenumber range. Far-IR also confirms that the C-terminal carboxyl group is free in the assemblies, thus it is solvated in the dispersant. Hence, the differences in the superstructures formed by the fibers are defined primarily by van der Waals energy minimization between the varied cross sectional morphologies of the core nanorods.
Varying the solvent offers a simple way to control superstructure polymorphism of a tri-β3-peptide-based supramolecular system.
β(3)-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0-3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β(3)-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β(3)-tetrapeptides Ac-β (3)Ala-β(3)Leu-β(3)Ile-β(3)Ala (Ac-β(3)[ALIA]), Ac-β(3)Ser-β(3)Leu-β(3)Ile-β(3)Ala (Ac-β(3)[SLIA]) and Ac-β (3)Lys-β (3)Leu-β(3)Ile-β (3)Glu (Ac-β(3)[KLIE]). β(3)-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β(3)[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β(3)[SLIA] and Ac-β(3)[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm.
Bioinspired fibres and hierarchical nano-materials are based on the self-assembly of organic building blocks such as polypeptides. Confirming the core structure of such materials is often challenging as they lack the long-range order required by crystallographic methods. Far-IR spectroscopy characterizes the vibrational modes of large molecular units. These vibrational modes are very sensitive to angle strain and second order interactions such as hydrogen bonding. As such, far-IR spectra hold information about the secondary structure and interactions of large biomolecules. Here we analyze the far-IR vibrational spectra of fibrous nano-materials based on three isomeric unnatural tripeptides, Ac-β(3)Leu-β(3)Ile-β(3)Ala, Ac-β(3)Ile-β(3)Ala-β(3)Leu, and Ac-β(3)Ala-β(3)Leu-β(3)Ile. These peptides have well described self-assembly characteristics, forming one-dimensional nanorods that impose tight conformational constraints on the constituent molecules. The synchrotron far-IR spectroscopic results were interpreted by using density functional theory (DFT) modelling based vibrational analysis. The sensitivity of the spectra to peptide conformation was assessed by comparing the experimental spectra with DFT predictions. In high dielectric implicit solvent, intramolecular hydrogen-bonding is inhibited and thus the energy minimized peptide structure remains close to the 14-helix folding characteristic of substituted β(3)-peptides, giving good agreement between the experimental and predicted vibration spectra. In contrast, energy minimization in vacuum alters the peptide conformation leading to intramolecular hydrogen bonds, and hence the predicted vibration spectra do not agree with the experimental data. Therefore, our results demonstrate the ability of far-IR spectroscopy to identify correct structural predictions and thus open the way for using far-IR spectroscopy for the characterization and structural analysis of bioinspired nano-materials and potentially their interactions with surfaces, ionic environments and other biomolecules. Far-IR structural analysis is particularly powerful in case of one- and two-dimensional materials such as fibres, hydrogels and thin layers where standard crystallographic analysis is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.