The majority of borderline ovarian tumours (BOTs) behave in a benign fashion, but some may show aggressive behavior. The reason behind this has not been elucidated. The epidermal growth factor receptor (EGFR) is known to contribute to cell survival signals as well as metastatic potential of some tumours. EGFR expression and gene status have not been thoroughly investigated in BOTs as it has in ovarian carcinomas. In this study we explore protein expression as well as gene mutations and amplifications of EGFR in BOTs in comparison to a subset of other epithelial ovarian tumours.We studied 85 tumours, including 61 BOTs, 10 low grade serous carcinomas (LGSCs), 9 high grade serous carcinomas (HGSCs) and 5 benign epithelial tumours. EGFR protein expression was studied using immunohistochemistry. Mutations were investigated by Sanger sequencing exons 18-21 of the tyrosine kinase domain of EGFR. Cases with comparatively higher protein expression were examined for gene amplification by chromogenic in situ hybridization. We also studied the tumours for KRAS and BRAF mutations.Immunohistochemistry results revealed both cytoplasmic and nuclear EGFR expression with variable degrees between tumours. The level of nuclear localization was relatively higher in BOTs and LGSCs as compared to HGSCs or benign tumours. The degree of nuclear expression of BOTs showed no significant difference from that in LGSCs (mean ranks 36.48, 33.05, respectively, p=0.625), but was significantly higher than in HGSCs (mean ranks: 38.88, 12.61 respectively, p< 0.001) and benign tumours (mean ranks: 35.18, 13.00 respectively, p= 0.010). Cytoplasmic expression level was higher in LGSCs. No EGFR gene mutations or amplification were identified, yet different polymorphisms were detected. Five different types of point mutations in the KRAS gene and the V600E BRAF mutation were detected exclusively in BOTs and LGSCs.Our study reports for the first time nuclear localization of EGFR in BOTs. The nuclear localization similarities between BOTs and LGSCs and not HGSCs support the hypothesis suggesting evolution of LGSCs from BOTs. We also confirm that EGFR mutations and amplifications are not molecular events in the pathogenesis of BOTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.