We have investigated the interaction of the DNA molecule with the anticancer drug doxorubicin (doxo) by using three different experimental techniques: single molecule stretching, single molecule imaging, and dynamic light scattering. Such techniques allowed us to get new insights on the mechanical behavior of the DNA-doxo complexes as well as on the physical chemistry of the interaction. First, the contour length data obtained from single molecule stretching were used to extract the physicochemical parameters of the DNA-doxo interaction under different buffer conditions. This analysis has proven that the physical chemistry of such interaction can be modulated by changing the ionic strength of the surrounding buffer. In particular we have found that at low ionc strengths doxo interacts with DNA by simple intercalation (no aggregation) and/or by forming bound dimers. For high ionic strengths, otherwise, doxo-doxo self-association is enhanced, giving rise to the formation of bound doxo aggregates composed by 3 to 4 molecules along the double-helix. On the other hand, the results obtained for the persistence length of the DNA-doxo complexes is strongly force-dependent, presenting different behaviors when measured with stretching or non-stretching techniques.
By using optical tweezers with an adjustable trap stiffness, we have performed systematic single molecule stretching experiments with two types of DNA-intercalator complexes, in order to investigate the effects of the maximum applied forces on the mechanical response of such complexes. We have explicitly shown that even in the low-force entropic regime the persistence length of the DNA-intercalator complexes is strongly force-dependent, although such behavior is not exhibited by bare DNA molecules. We discuss the possible physicochemical effects that can lead to such results. In particular, we propose that the stretching force can promote partial denaturation on the highly distorted double-helix of the DNA-intercalator complexes, which interfere strongly in the measured values of the persistence length.
As a model system
to study the elasticity of bottle-brush polymers,
we here introduce self-assembled DNA bottle brushes, consisting of
a DNA main chain that can be very long and still of precisely defined
length, and precisely monodisperse polypeptide side chains that are
physically bound to the DNA main chains. Polypeptide side chains have
a diblock architecture, where one block is a small archaeal nucleoid
protein Sso7d that strongly binds to DNA. The other block is a net
neutral, hydrophilic random coil polypeptide with a length of exactly
798 amino acids. Light scattering shows that for saturated brushes
the grafting density is one side chain per 5.6 nm of DNA main chain.
According to small-angle X-ray scattering, the brush diameter is D = 17 nm. By analyzing configurations of adsorbed DNA bottle
brushes using AFM, we find that the effective persistence of the saturated
DNA bottle brushes is Peff = 95 nm, but
from force–extension curves of single DNA bottle brushes measured
using optical tweezers we find Peff =
15 nm. The latter is equal to the value expected for DNA coated by
the Sso7d binding block alone. The apparent discrepancy between the
two measurements is rationalized in terms of the scale dependence
of the bottle-brush elasticity using theory previously developed to
analyze the scale-dependent electrostatic stiffening of DNA at low
ionic strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.