In this paper, we consider the thermal bath Lindblad master equation to describe the quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode bosonic system interacting with an environment, we analyse how both the coupling between the modes and the coupling with the environment characterised by the frequency and the relaxation rate vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be induced by the dynamic coupling between the different modes. For the system, initially prepared in a two-mode squeezed state, we find the logarithmic negativity as defined by the magnitude and orientation of the frequency and the relaxation rate vectors. We show that, in the regime of finite-time disentanglement, reorientation of the relaxation rate vector may significantly increase the time of disentanglement.
In this communication we study dynamics of the open quantum bosonic system governed by the generalized Lindblad equation with both dynamical and environment induced intermode couplings taken into account. By using the method of characteristics we deduce the analytical expression for the normally ordered characteristic function. Analytical results for one-point correlation functions describing temporal evolution of the covariance matrix are obtained.
We employ an exact solution of the thermal bath Lindblad master equation with the Liouvillian superoperator that takes into account both dynamic and environment-induced intermode couplings to study the speed of evolution and quantum speed limit (QSL) times of a open multi-mode bosonic system. The time-dependent QSL times are defined from quantum speed limits, giving upper bounds on the rate of change of two different measures of distinguishability: the fidelity of evolution and the Hilbert–Schmidt distance. For Gaussian states, we derive explicit expressions for the evolution speed and the QSL times. General analytical results are applied to the special case of a two-mode system where the intermode couplings can be characterized by two intermode coupling vectors: the frequency vector and the relaxation rate vector. For the system initially prepared in a two-mode squeezed state, dynamical regimes are generally determined by the intermode coupling vectors, the squeezing parameter and temperature. When the vectors are parallel, different regimes may be associated with the disentanglement time, which is found to be an increasing (a decreasing) function of the length of the relaxation vector when the squeezing parameter is below (above) its temperature-dependent critical value. Alternatively, we study dynamical regimes related to the long-time asymptotic behavior of the QSL times, which is characterized by linear time dependence with the proportionality coefficients defined as the long-time asymptotic ratios. These coefficients are evaluated as a function of the squeezing parameter at varying temperatures and relaxation vector lengths. We also discuss how the magnitude and orientation of the intermode coupling vectors influence the maximum speed of evolution and dynamics of the entropy and the mutual information.
We investigate environment induced effects of decoherence in discrimination between the Schrödinger cat states transmitted through noisy quantum channels such as optical fibers. We calculate the fidelity and the statistics of photocounts for both even and odd coherent states. The method that uses the beam splitter-like transformation acting in the enlarged Hilbert space to model the quantum channel is compared with the approach based on the Lindblad dynamics of one-mode bosonic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.