The metabolic response to glucose ingestion was studied in 10 normal men (aged 21-23 yr) by the simultaneous application of the forearm and double isotope techniques. The latter consisted of a primed constant infusion of [3-3H]glucose, followed by the administration of an oral glucose load (mean +/- SE, 90.7 +/- 0.7 g) containing [1-14C]glucose. Most (80.6 +/- 8.1%) of the ingested glucose appeared systemically within 270 min, suggesting that initial splanchnic glucose extraction accounted for 19.4 +/- 3.1% (17.7 +/- 2.8 g) of the oral load. Basal hepatic glucose output (2.22 +/- 0.12 mg/kg X min) was reduced (P less than 0.005) within 30 min after glucose loading and remained suppressed throughout the study; its mean reduction from 0-270 min was 54.9 +/- 9.9%, thereby accounting for the conservation of 26.5 +/- 4.9 g glucose. Suprabasal glucose appearance from 0-270 min was 46.6 +/- 4.3 g. Forearm glucose uptake rose 8.5-fold to 0.664 +/- 0.083 mg/100 ml forearm X min at 45 min, but basal forearm oxygen uptake (6.1 +/- 0.4 mumol/100 ml forearm X min) did not change. The increment in glucose disappearance from 0-270 min was 46.4 +/- 3.8 g, of which increased glucose uptake by muscle, determined from the forearm glucose uptake data, accounted for 37.7 +/- 5.1 g (81%). If uptake of the remaining 8.7 g was shared equally by the liver and peripheral tissues, the splanchnic bed and periphery would account, respectively, for 47.1 g (52%) and 43.5 g (48%) of the ingested load. We conclude that splanchnic and peripheral tissues contribute almost equally to the total homeostatic response; in kinetic terms, decreased hepatic glucose output and increased glucose uptake (splanchnic plus peripheral) constitute 29% and 71% of the total response, respectively; restoration of basal glucose kinetics after glucose ingestion requires more than 270 min; and increased peripheral oxygen uptake is not the mechanism of glucose-induced thermogenesis which, instead, may reflect increased splanchnic oxygen consumption.
Mechanisms of glucose intolerance with aging were studied by comparing the metabolic response to glucose ingestion in 10 young (20-23 yr) and 10 elderly (73-80 yr) normal men with the simultaneous application of the forearm and double-isotope techniques. The latter technique consisted of a primed-constant infusion of [3-3H]glucose followed by the administration of an oral glucose load (mean +/- SE, 90.7 +/- 0.7 g) containing [1-14C]glucose. Fasting plasma glucose and insulin concentrations were similar in young and elderly subjects, but in the elderly, glucose tolerance was markedly impaired. Although in the elderly the initial rise in insulin levels (delta, i.e., the incremental area under the curve) from 0 to 30 min was delayed (P less than .02), the response from 0 to 45 min, 0 to 60 min, and thereafter equaled that in the young group, and from 90 to 240 min insulin concentrations in the elderly exceeded those in young subjects. Basal hepatic glucose output (HGO) was similar in young and elderly men (2.13 +/- 0.10 and 1.97 +/- 0.14 mg.kg-1.min-1, respectively). Similar proportional reductions in HGO from 0 to 270 min after glucose loading occurred in young (59.7 +/- 10.3%) and elderly (50.3 +/- 4.9%) subjects but was delayed in the elderly. Suppression of HGO was observed in the young 30 min after glucose ingestion (P less than .02), but not before 60 min in the elderly subjects (P less than .05). The systemic appearance of ingested glucose (0-270 min) was slowed with age (80.7 +/- 3.1 and 66.9 +/- 4.3% of the oral load in the young and elderly groups, respectively; P less than .02). Initial increments in both total glucose disappearance (Rd) and forearm glucose uptake (FGU) from 0 to 60 min after glucose loading were decreased in the elderly (Rd, 4.1 +/- 0.7 vs. 11.5 +/- 1.3 g, P less than .001; FGU, 17.2 +/- 1.4 vs. 24.6 +/- 2.5 md/dl forearm, P less than .02). The overall increment (delta, 0-270 min) in Rd was reduced with age (47.2 +/- 2.9 and 34.5 +/- 3.6 g, P less than .02 in the young and elderly, respectively), but the corresponding data for FGU were similar in the two groups.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.