The application of artificial intelligence (AI) in decision-making is regarded as the most impactful disruption in an organization's digitalization. However, the benefits of the algorithmic decision can be leveraged only if the managers of an organization adopt this technology. Research found that despite the superior performance of algorithms, people discount algorithmic decisions either deliberately or unintentionally, a phenomenon known as algorithm aversion. In this regard, the current study seeks to investigate whether managers' innovation resistance, measured by different barriers, has any impact on algorithm aversion. Analyzing the survey data of 167 bank/financial managers, we found that while value barriers, tradition barriers, and image barriers are significantly associated with algorithm aversion, such relationships are absent in the case of usage barriers and risk barriers. The findings of this study have several theoretical and practical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.