SUMMARY
This review article introduces the significance of testing of volatile organic compounds (VOCs) in clinical samples and summarizes important features of some of the technologies. Compared to other human diseases such as cancer, studies on VOC analysis in cases of infectious diseases are limited. Here, we have described results of studies which have used some of the appropriate technologies to evaluate VOC biomarkers and biomarker profiles associated with infections. The publications reviewed include important infections of the respiratory tract, gastrointestinal tract, urinary tract, and nasal cavity. The results highlight the use of VOC biomarker profiles resulting from certain infectious diseases in discriminating between infected and healthy subjects. Infection-related VOC profiles measured in exhaled breath as well as from headspaces of feces or urine samples are a source of information with respect to disease detection. The volatiles emitted in clinical matrices may on the one hand represent metabolites of the infecting pathogen or on the other hand reflect pathogen-induced host responses or, indeed, a combination of both. Because exhaled-breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of infectious diseases.
Development of noninvasive methods for tuberculosis (TB) diagnosis, with the potential to be administered in field situations, remains as an unmet challenge. A wide array of molecules are present in urine and reflect the pathophysiological condition of a subject. With infection, an alteration in the molecular constituents is anticipated, characterization of which may form a basis for TB diagnosis. In the present study volatile organic compounds (VOCs) in human urine derived from TB patients and healthy controls were identified and quantified using headspace gas chromatography/mass spectrometry (GC/MS). We found significant (p < 0.05) increase in the abundance of o-xylene (6.37) and isopropyl acetate (2.07) and decreased level of 3-pentanol (0.59), dimethylstyrene (0.37), and cymol (0.42) in TB patients compared to controls. These markers could discriminate TB from healthy controls and related diseases like lung cancer and chronic obstructive pulmonary disorder. This study suggests a possibility of using urinary VOCs for the diagnosis of human TB.
Curcumin, the bioactive component of turmeric also known as “Indian Yellow Gold,” exhibits therapeutic efficacy against several chronic inflammatory and infectious diseases. Even though considered as a wonder drug pertaining to a myriad of reported benefits, the translational potential of curcumin is limited by its low systemic bioavailability due to its poor intestinal absorption, rapid metabolism, and rapid systemic elimination. Therefore, the translational potential of this compound is specifically challenged by bioavailability issues, and several laboratories are making efforts to improve its bioavailability. We developed a simple one-step process to generate curcumin nanoparticles of ~200 nm in size, which yielded a fivefold enhanced bioavailability in mice over regular curcumin. Curcumin nanoparticles drastically reduced hepatotoxicity induced by antitubercular antibiotics during treatment in mice. Most interestingly, co-treatment of nanoparticle-formulated curcumin along with antitubercular antibiotics dramatically reduced the risk for disease reactivation and reinfection, which is the major shortfall of current antibiotic treatment adopted by Directly Observed Treatment Short-course. Furthermore, nanoparticle-formulated curcumin significantly reduced the time needed for antibiotic therapy to obtain sterile immunity, thereby reducing the possibility of generating drug-resistant variants of the organisms. Therefore, adjunct therapy of nano-formulated curcumin with enhanced bioavailability may be beneficial to treatment of tuberculosis and possibly other diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.