SARS-CoV-2 has recently emerged as a pandemic that has caused more than 2.4 million deaths worldwide. Since the onset of infections, several full-length sequences of viral genome have been made available which have been used to gain insights into viral dynamics. We utilised a meta-data driven comparative analysis tool for sequences (Meta-CATS) algorithm to identify mutations in 829 SARS-CoV-2 genomes from around the world. The algorithm predicted sixty-one mutations among SARS-CoV-2 genomes. We observed that most of the mutations were concentrated around three protein coding genes viz nsp3 (non-structural protein 3), RdRp (RNA-directed RNA polymerase) and Nucleocapsid (N) proteins of SARS-CoV-2. We used various computational tools including normal mode analysis (NMA), C-α discrete molecular dynamics (DMD) and all-atom molecular dynamic simulations (MD) to study the effect of mutations on functionality, stability and flexibility of SARS-CoV-2 structural proteins including envelope (E), N and spike (S) proteins. PredictSNP predictor suggested that four mutations (L37H in E, R203K and P344S in N and D614G in S) out of seven were predicted to be neutral whilst the remaining ones (P13L, S197L and G204R in N) were predicted to be deleterious in nature thereby impacting protein functionality. NMA, C-α DMD and all-atom MD suggested some mutations to have stabilizing roles (P13L, S197L and R203K in N protein) where remaining ones were predicted to destabilize mutant protein. In summary, we identified significant mutations in SARS-CoV-2 genomes as well as used computational approaches to further characterize the possible effect of highly significant mutations on SARS-CoV-2 structural proteins. Communicated by Ramaswamy H. Sarma
PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have been utilized to prevent these interactions, the number of such molecules is inadequate. Hence, in this study, ten molecular libraries containing large number of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamics simulation studies revealed that Hit_II is a potent inhibitor for the PDZ domain and confirm the allosteric nature of Hit_III. Additionally, ADME analysis suggests the drug-likeness of both Hit_II and Hit_III. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.
PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have been utilized to prevent these interactions, the number of such molecules is inadequate.Hence, in this study, ten molecular libraries containing large number of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamics simulation studies revealed that Hit_II is a potent inhibitor for the PDZ domain and confirm the allosteric nature of Hit_III. Additionally, ADME analysis suggests the drug-likeness of both Hit_II and Hit_III. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.
PICK1 (protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, preventing PDZ-GluA2 binding is thought to novel therapeutic target in such diseases. To target this, generally, peptides were synthesized and tested. Though small organic molecules have been targeted to prevent these interactions, the number of such molecules is inadequate. Thus, in this study, ten molecular libraries containing large numbers of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamic simulation studies revealed that two hits (Hit_I and Hit_III) show efficient binding to the PDZ domain. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.
PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have been utilized to prevent these interactions, the number of such molecules is inadequate. Hence, in this study, ten molecular libraries containing large number of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamics simulation studies revealed that Hit_II is a potent inhibitor for the PDZ domain and confirm the allosteric nature of Hit_III. Additionally, ADME analysis suggests the drug-likeness of both Hit_II and Hit_III. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.