Summary
Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in looping interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge shortrange enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales.
Trans-acting factors that mediate B-cell specific transcription of immunoglobulin genes have been postulated based on an analysis of the expression of exogenously introduced immunoglobulin gene recombinants in lymphoid and non-lymphoid cells. Two B-cell-specific, cis-acting transcriptional regulatory elements have been identified. One element is located in the intron between the variable (V) and constant (C) regions of both heavy and kappa light-chain genes and acts as a transcriptional enhancer. The second element is found upstream of both heavy and kappa light-chain gene promoters. This element directs lymphoid-specific transcription even in the presence of viral enhancers. We have sought nuclear factors that might bind specifically to these two regulatory elements by application of a modified gel electrophoresis DNA binding assay. We report here the identification of a human B-cell nuclear factor (IgNF-A) that binds to DNA sequences in the upstream regions of both the mouse heavy and kappa light-chain gene promoters and also to the mouse heavy-chain gene enhancer. This sequence-specific binding is probably mediated by a highly conserved sequence motif, ATTTGCAT, present in all three transcriptional elements. Interestingly, a factor showing similar binding specificity to IgNF-A is also present in human HeLa cells.
Pulmonary metastasis of breast cancer requires recruitment and expansion of T regulatory cells (Tregs) that promote escape from host protective immune cells. However, it remains unclear precisely how tumors recruit Tregs to support metastatic growth. Here we report the mechanistic involvement of a unique and previously undescribed subset of regulatory B cells. These cells, designated tumor-evoked Bregs (tBregs), phenotypically resemble activated but poorly proliferative mature B2 cells (CD19+ CD25High CD69High) that express constitutively active Stat3 and B7-H1High CD81High CD86High CD62LLowIgMInt. Our studies with the mouse 4T1 model of breast cancer indicate that the primary role of tBregs in lung metastases is to induce TGFβ-dependent conversion of FoxP3+ Tregs from resting CD4+ T cells. In the absence of tBregs, 4T1 tumors cannot metastasize into the lungs efficiently due to poor Treg conversion. Our findings have important clinical implications, since they suggest that tBregs must be controlled to interrupt the initiation of a key cancer-induced immunosuppressive event that is critical to support cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.