Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph of a valid user to the sensor. Thus, face liveness detection is a necessary step before granting authentication to the user. In this paper, we have developed deep architectures for face liveness detection that use a combination of texture analysis and a convolutional neural network (CNN) to classify the captured image as real or fake. Our development greatly improved upon a recent approach that applies nonlinear diffusion based on an additive operator splitting scheme and a tridiagonal matrix block-solver algorithm to the image, which enhances the edges and surface texture in the real image. We then fed the diffused image to a deep CNN to identify the complex and deep features for classification. We obtained 100% accuracy on the NUAA Photograph Impostor dataset for face liveness detection using one of our enhanced architectures. Further, we gained insight into the enhancement of the face liveness detection architecture by evaluating three different deep architectures, which included deep CNN, residual network, and the inception network version 4. We evaluated the performance of each of these architectures on the NUAA dataset and present here the experimental results showing under what conditions an architecture would be better suited for face liveness detection. While the residual network gave us competitive results, the inception network version 4 produced the optimal accuracy of 100% in liveness detection (with nonlinear anisotropic diffused images with a smoothness parameter of 15). Our approach outperformed all current state-of-the-art methods.
No abstract
Face liveness detection is a critical preprocessing step in face recognition for avoiding face spoofing attacks, where an impostor can impersonate a valid user for authentication. While considerable research has been recently done in improving the accuracy of face liveness detection, the best current approaches use a two-step process of first applying non-linear anisotropic diffusion to the incoming image and then using a deep network for final liveness decision. Such an approach is not viable for real-time face liveness detection. We develop two end-to-end real-time solutions where nonlinear anisotropic diffusion based on an additive operator splitting scheme is first applied to an incoming static image, which enhances the edges and surface texture, and preserves the boundary locations in the real image. The diffused image is then forwarded to a pre-trained Specialized Convolutional Neural Network (SCNN) and the Inception network version 4, which identify the complex and deep features for face liveness classification. We evaluate the performance of our integrated approach using the SCNN and Inception v4 on the Replay-Attack dataset and Replay-Mobile dataset. The entire architecture is created in such a manner that, once trained, the face liveness detection can be accomplished in real-time. We achieve promising results of 96.03% and 96.21% face liveness detection accuracy with the SCNN, and 94.77% and 95.53% accuracy with the Inception v4, on the Replay-Attack, and Replay-Mobile datasets, respectively. We also develop a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Even though the use of CNN followed by LSTM is not new, combining it with diffusion (that has proven to be the best approach for single image liveness detection) is novel. Performance evaluation of our architecture on the REPLAY-ATTACK dataset gave 98.71% test accuracy and 2.77% Half Total Error Rate (HTER), and on the REPLAY-MOBILE dataset gave 95.41% accuracy and 5.28% HTER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.