The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.
Nonpyrophoric aminophosphines reacted with indium(III) halides in the presence of zinc chloride have emerged as promising phosphorus precursors in the synthesis of colloidal indium phosphide (InP) quantum dots (QDs). Nonetheless, due to the required P/In ratio of 4:1, it remains challenging to prepare large-sized (>5 nm), near-infrared absorbing/emitting InP QDs using this synthetic scheme. Furthermore, the addition of zinc chloride leads to structural disorder and the formation of shallow trap states inducing spectral broadening. To overcome these limitations, we introduce a synthetic approach relying on the use of indium(I) halide, which acts as both the indium source and reducing agent for aminophosphine. The developed zinc-free, single-injection method gives access to tetrahedral InP QDs with an edge length > 10 nm and narrow size distribution. The first excitonic peak is tunable from 450 to 700 nm by changing the indium halide (InI, InBr, InCl). Kinetic studies using phosphorus NMR reveal the coexistence of two reaction pathways, the reduction of transaminated aminophosphine by In(I) and via redox disproportionation. Etching the surface of the obtained InP QDs at room temperature with in situ-generated hydrofluoric acid (HF) leads to strong photoluminescence (PL) emission with a quantum yield approaching 80%. Alternatively, surface passivation of the InP core QDs was achieved by low-temperature (140 °C) ZnS shelling using the monomolecular precursor zinc diethyldithiocarbamate. The obtained InP/ZnS core/shell QDs that emit in a range of 507–728 nm exhibit a small Stokes shift (110–120 meV) and a narrow PL line width (112 meV at 728 nm).
Inositol pyrophosphates are signaling molecules containing at least one phosphoanhydride bond that regulate a wide range of cellular processes in eukaryotes. With a cyclic array of phosphate esters and diphosphate groups around myo-inositol, these molecular messengers possess the highest charge density found in nature. Recent work deciphering inositol pyrophosphate biosynthesis in Arabidopsis revealed important functions of these messengers in nutrient sensing, hormone signaling, and plant immunity. However, despite the rapid hydrolysis of these molecules in plant extracts, very little is known about the molecular identity of the phosphohydrolases that convert these messengers back to their inositol polyphosphate precursors. Here, we investigate whether Arabidopsis Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSP1-5) catalyze inositol pyrophosphate phosphohydrolase activity. We find that recombinant proteins of all five Arabidopsis PFA-DSP homologues display phosphohydrolase activity with a high specificity for the 5-β-phosphate of inositol pyrophosphates and only minor activity against the β-phosphates of 4-InsP 7 and 6-InsP 7 . We further show that heterologous expression of Arabidopsis PFA-DSP1-5 rescues wortmannin sensitivity and deranged inositol pyrophosphate homeostasis caused by the deficiency of the PFA-DSPtype inositol pyrophosphate phosphohydrolase Siw14 in yeast. Heterologous expression in Nicotiana benthamiana leaves provided evidence that Arabidopsis PFA-DSP1 also displays 5-β-phosphate-specific inositol pyrophosphate phosphohydrolase activity in planta. Our findings lay the biochemical basis and provide the genetic tools to uncover the roles of inositol pyrophosphates in plant physiology and plant development.
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Continuous flow synthesis of semiconductor quantum dots (QDs) holds the promise of being highly reproducible, being scalable, and providing precise control of all reaction parameters. Here, we applied this technique to the aqueous synthesis of the Ag−In−S (AIS) core and AIS/ZnS core/ shell QDs and optimized several parameters comprising reaction temperature, pressure, time, nature, and the ratio of precursors. Photoluminescence quantum yield (PLQY) values of 32%/44% (average/best) for the core and 77%/83% for the core/shell system have been obtained in short reaction times (8−15 min). We demonstrate by means of combined structural and optical studies that the high PLQY originates from donor−acceptor pair recombination processes, involving essentially [In Ag 2+ + 2V Ag − ] defect complexes whose formation is favored by the large excess of indium used (In:Ag ratio of 4:1), and the low reaction temperature (100−120 °C). The structural disorder is further enhanced during ZnS shell growth, which in addition to surface passivation and removal of nonradiative decay channels leads to the partial diffusion of the added zinc ions into the AIS core and the formation of Zn In − antisite defects. The presented method provides excellent reproducibility and high scalability, facilitating the large-scale production of highly luminescent AIS/ZnS QDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.