Gal4p regulates expression of genes necessary for galactose catabolism in Saccharomyces cerevisiae. We have previously shown that phosphorylation of Gal4p requires both its DNA binding and transcriptional-activation functions and have suggested that phosphorylation occurs as a consequence of interaction with general transcription factors. In this study, we show that phosphorylation occurs rapidly on a limited fraction of overexpressed Gal4p present in a sodium dodecyl sulfate-extractable subcellular fraction while a significant fraction remains stably unphosphorylated. Taken together with our previous observations, we conclude that Gal4p is phosphorylated only if it becomes localized to the nucleus and is capable of both DNA binding and transcriptional activation. We demonstrate that Gal4p is multiply phosphorylated at both the C and N termini, and we identify the precise locations of three sites of phosphorylation at serines 691, 696, and 699. Of these sites, only serine 699 must be phosphorylated for galactose-inducible transcription to occur. Mutation of S-699 to alanine significantly impairs GAL induction by galactose in GAL80 ؉ cells but does not affect transcriptional activation by Gal4p in gal80 ؊ cells. In gal80 ؊ cells, Gal4p phosphorylation, including that of serine 699, is stimulated by the presence of both galactose and glucose, indicating that phosphorylation at this site is not specifically activated by galactose. Serine 699 phosphorylation requires Gal4p's DNA binding function and is influenced by the function of the RNA polymerase II holoenzyme component Gal11p. These results suggest that a phosphorylation on Gal4p, likely resulting from interaction with the holoenzyme, modulates the induction process by regulating interaction between Gal4p and Gal80p.
The gene encoding yeast processing alpha glucosidase I, CWH41, was overexpressed in Saccharomyces cerevisiae AH22, resulting in a 28-fold increase in expression of the soluble form of the enzyme. The soluble enzyme results from proteolytic cleavage between residues Ala 24 and Thr 25 of the transmembrane sequence of the membrane-bound form of the enzyme. This cleavage could be partially inhibited by addition of leupeptin and pepstatin during the enzyme isolation. The enzyme was purified to a final specific activity of 8550 U/mg protein using a combination of ammonium sulfate precipitation, anion exchange, concanavalin A, and gel filtration chromatography. The soluble form of the enzyme is a monomer with a molecular weight of 98 kDa by SDS-PAGE, and 89 kDa by gel filtration. The molecular weight decreased by approximately 5 kDa after treatment with N-glycosidase F, indicating that it is a glycoprotein. Soluble glucosidase I was sensitive to diethyl pyrocarbonate and not affected by N-ethylmaleimide, suggesting that mechanistically it is more similar to the plant than the mammalian form of the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.