The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions of antibodies generated by next-generation sequencing (NGS) studies. Building on the wealth of available sequence data, we implemented a computational shuffling approach to antibody components, using the complementarity-determining region (CDR) and the framework region (FWR) to optimize an antibody for improved affinity and developability. This approach uses a set of rules to suitably combine the CDRs and FWRs derived from naturally occurring antibody sequences to engineer an antibody with high affinity and specificity. To illustrate this approach, we selected a representative SARS-CoV-2-neutralizing antibody, H4, which was identified and isolated previously based on the predominant germlines that were employed in a human host to target the SARS-CoV-2-human ACE2 receptor interaction. Compared to screening vast CDR libraries for affinity enhancements, our approach identified fewer than 100 antibody framework–CDR combinations, from which we screened and selected an antibody (CB79) that showed a reduced dissociation rate and improved affinity against the SARS-CoV-2 spike protein (7-fold) when compared to H4. The improved affinity also translated into improved neutralization (>75-fold improvement) of SARS-CoV-2. Our rapid and robust approach for optimizing antibodies from parts without the need for tedious structure-guided CDR optimization will have broad utility for biotechnological applications.
The application of Machine Learning (ML) tools to engineer novel antibodies having predictable functional properties is gaining prominence. Herein, we present a platform that employs an ML-guided optimization of the complementarity-determining region (CDR) together with a CDR framework (FR) shuffling method to engineer affinity-enhanced and clinically developable monoclonal antibodies (mAbs) from a limited experimental screen space (order of 10^2 designs) using only two experimental iterations. Although high-complexity deep learning models like graph neural networks (GNNs) and large language models (LLMs) have shown success in protein folding with large dataset sizes, the small and biased nature of the publicly available antibody-antigen interaction datasets is not sufficient to capture the diversity of mutations virtually screened using these models in an affinity enhancement campaign. To address this key gap, we introduced inductive biases learned from extensive domain knowledge of protein-protein interactions through feature engineering and selected model hyperparameters to reduce the overfitting of the limited interaction datasets. Notably, we show that this platform performs better than GNNs and LLMs on an in-house validation dataset that is enriched in diverse CDR mutations that go beyond alanine-scanning. To illustrate the broad applicability of this platform, we successfully solved a challenging problem of redesigning two different anti-SARS-COV-2 mAbs to enhance affinity (up to 2 orders of magnitude) and neutralizing potency against the dynamically evolving SARS-COV-2 Omicron variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.