Original article can be found at: http://www.sciencedirect.com/science/journal/13522310 Copyright Elsevier Ltd. DOI : 10.1016/j.atmosenv.2007.12.010There is an increasing concern about the occurrence of polycyclic aromatic hydrocarbons (PAHs) in the environment as they are ubiquitous in ambient air and some of them are among the strongest known carcinogens. PAHs and their derivatives are produced by the incomplete combustion of organic material arising, partly, from natural combustion such as forest and volcanic eruption, but with the majority due to anthropogenic emissions. The PAH concentration varies significantly in various rural and urban environments and is mainly influenced by vehicular and domestic emissions. The review serves as a database to identify and characterize the emission sources of PAHs and hence various approaches including diagnostic ratio (DR) and principal component analysis (PCA) are discussed in detail. These approaches allow individual PAHs to be associated with their origin sources. The factors that effect PAH emission and estimated emission rate are also discussed in this paper. Although the levels of low molecular weight PAHs are high in vapor phase, most of the probable human carcinogenic PAHs are found to be associated with particulate matter, especially in fine mode particles in ambient air. Many countries have proposed a non-mandatory concentration limit for PAHs, whereas the health risk studies conducted in relation to PAH exposure, urge that these pollutants should be given a high priority when considering air quality management and reduction of impacts. r 2007 Elsevier Ltd. All rights reserved
Published by Copernicus Publications on behalf of the European Geosciences Union. A. Baklanov et al.: Online coupled regional meteorology chemistry models in EuropeAbstract. Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main time step for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This article offers a comprehensive review of the current research status of online coupled meteorology and atmospheric chemistry modelling within Europe. Eighteen regional online coupled models developed or being used in Europe are described and compared. Topics discussed include a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; a brief overview of existing online mesoscale models and European model developments; an analysis on how feedback processes are treated in these models; numerical issues associated with coupled models; and several case studies and model performance evaluation methods. Finally, this article highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. This review will be of particular interest to model developers and users in all three fields as it presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.
Abstract. Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research Published by Copernicus Publications on behalf of the European Geosciences Union. J. Kukkonen et al.: A review of operational, regional-scale, chemical weather forecasting models in Europedirections, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.
More than ten state-of-the-art regional air quality models have been applied as part of the Air Quality Model Evaluation International Initiative (AQMEII). These models were run by twenty independent groups in Europe and North America. Standardised modelling outputs over a full year (2006) from each group have been shared on the web-distributed ENSEMBLE system, which allows for statistical and ensemble analyses to be performed by each group. The estimated ground-level ozone mixing ratios from the models are collectively examined in an ensemble fashion and evaluated against a large set of observations from both continents. The scale of the exercise is unprecedented and offers a unique opportunity to investigate methodologies for generating skilful ensembles of regional air quality models outputs. Despite the remarkable progress of ensemble air quality modelling over the past decade, there are still outstanding questions regarding this technique. Among them, what is the best and most beneficial way to build an ensemble of members? And how should the optimum size of the ensemble be determined in order to capture data variability as well as keeping the error low? These questions are addressed here by looking at optimal ensemble size and quality of the members. The analysis carried out is based on systematic minimization of the model error and is important for performing diagnostic/probabilistic model evaluation. It is shown that the most commonly used multi-model approach, namely the average over all available members, can be outperformed by subsets of members optimally selected in terms of bias, error, and correlation. More importantly, this result does not strictly depend on the skill of the individual members, but may require the inclusion of low-ranking skill-score members. A clustering methodology is applied to discern among members and to build a skilful ensemble based on model association and data clustering, which makes no use of priori knowledge of model skill. Results show that, while the methodology needs further refinement, by optimally selecting the cluster distance and association criteria, this approach can be useful for model applications beyond those strictly related to model evaluation, such as air quality forecasting
The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together sixteen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and boundary conditions. With the advent of online-coupled models providing new capability to quantify the effects of feedback processes, the main aim of this study is to compare the response of coupled air quality models to simulate levels of O 3 over the two continental regions. The simulated annual, seasonal, continental and sub-regional ozone surface concentrations and vertical profiles for the year 2010 have been evaluated against a large observational database from different measurement networks operating in Europe and North America. Results show a general model underestimation of the annual surface ozone levels over both continents reaching up to 18% over Europe and 22% over North America. The observed temporal variations are successfully reproduced with correlation coefficients larger than 0.8. Results clearly show that the simulated levels highly depend on the meteorological and chemical configurations used in the models, even within the same modeling system. The seasonal and sub-regional analyses show the models' tendency to overestimate surface ozone in all regions during autumn and underestimate in winter. Boundary conditions strongly influence ozone predictions especially during winter and autumn, whereas during summer local production dominates over regional transport. Daily maximum 8-hour averaged surface ozone levels below 50-60 g m-3 are overestimated by all models over both continents while levels over 120-140 g m-3 are underestimated, suggesting that models have a tendency to severely under-predict high O 3 values that are of concern for air quality forecast and control policy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.