Two different multivariate clustering techniques, the K-means partitioning method and the Dirichlet process of mixture modeling, have been applied to the BATSE Gamma-ray burst (GRB) catalog, to obtain the optimum number of coherent groups. In the standard paradigm, GRB are classified in only two groups, the long and short bursts. However, for both the clustering techniques, the optimal number of classes was found to be three, a result which is consistent with previous statistical analysis. In this classification, the long bursts are further divided into two groups which are primarily differentiated by their total fluence and duration and hence are named low and high fluence GRB. Analysis of GRB with known red-shifts and spectral parameters suggests that low fluence GRB have nearly constant isotropic energy output of 10 52 ergs while for the high fluence ones, the energy output ranges from 10 52 to 10 54 ergs. It is speculated that the three kinds of GRBs reflect three different origins: mergers of neutron star systems, mergers between white dwarfs and neutron stars, and collapse of massive stars
We present the calibration and background model for the Large Area X-ray Proportional Counter (LAXPC) detectors on-board AstroSat. LAXPC instrument has three nominally identical detectors to achieve large collecting area. These detectors are independent of each other and in the event analysis mode, they record the arrival time and energy of each photon that is detected. The detectors have a time-resolution of 10 µs and a dead-time of about 42 µs. This makes LAXPC ideal for timing studies. The energy resolution and peak channel to energy mapping were obtained from calibration on ground using radioactive sources coupled with GEANT4 simulations of the detectors. The response matrix was further refined from observations of the Crab after launch. At around 20 keV the energy resolution of detector is 10-15%, while the combined effective area of the 3 detectors is about 6000 cm 2 .
An empirical Compton upscattering model is described that reproduces both the fractional amplitude (rms) versus energy and the soft time lags in the ≈830 Hz quasi-periodic oscillation (QPO) observed in 4U 1608Ϫ52 on 1996 March 3. A combination of two coherent variations in the coronal and soft photon temperatures (with their relative contributions determined by enforcing energy conservation) gives rise to the QPO's energy-dependent characteristics. All input parameters to the model, save a characteristic plasma size and the fraction of Comptonized photons impinging on the soft photon source, are derived from the time-averaged photon energy spectrum of the same observation. Fits to the fractional rms and phase lag data for this kilohertz QPO imply that the spatial extent of the plasma is in the range from ∼4 to 15 km.
We consider implications of a possible presence of a Thomson-thick, low-temperature, plasma cloud surrounding the compact object in the binary system Cyg X-3. The presence of such a cloud was earlier inferred from the energy-independent orbital modulation of the X-ray flux and the lack of high frequencies in its power spectra. Here, we study the effect of Compton scattering by the cloud on the X-ray energy and power spectra, concentrating on the hard spectral state. The process reduces the energy of the high-energy break/cut-off in the energy spectra, which allows us to determine the Thomson optical depth. This, together with the observed cut-off in the power spectrum, determines the size of the plasma to be ∼2 × 10 9 cm. At this size, the cloud will be in thermal equilibrium in the photon field of the X-ray source, which yields the cloud temperature of 3 keV, which refines the determination of the Thomson optical depth to ∼7. At these parameters, thermal bremsstrahlung emission of the cloud becomes important as well. The physical origin of the cloud is likely to be collision of the very strong stellar wind of the companion Wolf-Rayet star with a small accretion disc formed by the wind accretion. Our model thus explains the peculiar X-ray energy and power spectra of Cyg X-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.