Triple negative breast cancer (TNBC) is classically treated with combination chemotherapies. Although, initially responsive to chemotherapies, TNBC patients frequently develop drug-resistant, metastatic disease. Chemotherapy resistance can develop through many mechanisms, including induction of a transient growth-arrested state, known as the therapy-induced senescence (TIS). In this paper, we will focus on chemoresistance in TNBC due to TIS. One of the key characteristics of senescent cells is a complex secretory phenotype, known as the senescence-associated secretory proteome (SASP), which by prompting immune-mediated clearance of senescent cells maintains tissue homeostasis and suppresses tumorigenesis. However, in cancer, particularly with TIS, senescent cells themselves as well as SASP promote cellular reprograming into a stem-like state responsible for the emergence of drug-resistant, aggressive clones. In addition to chemotherapies, outcomes of recently approved immune and DNA damage-response (DDR)-directed therapies are also affected by TIS, implying that this a common strategy used by cancer cells for evading treatment. Although there has been an explosion of scientific research for manipulating TIS for prevention of drug resistance, much of it is still at the pre-clinical stage. From an evolutionary perspective, cancer is driven by natural selection, wherein the fittest tumor cells survive and proliferate while the tumor microenvironment influences tumor cell fitness. As TIS seems to be preferred for increasing the fitness of drug-challenged cancer cells, we will propose a few tactics to control it by using the principles of evolutionary biology. We hope that with appropriate therapeutic intervention, this detrimental cellular fate could be diverted in favor of TNBC patients.
While initially highly successful, targeted therapies eventually fail as populations of tumor cells evolve mechanisms of resistance, leading to resumption of tumor growth. Historically, cell-intrinsic mutational changes have been the major focus of experimental and clinical studies to decipher origins of therapy resistance. While the importance of these mutational changes is undeniable, a growing body of evidence suggests that non-cell autonomous interactions between sub-populations of tumor cells, as well as with non-tumor cells within tumor microenvironment, might have a profound impact on both short term sensitivity of cancer cells to therapies, as well as on the evolutionary dynamics of emergent resistance. In contrast to well established tools to interrogate the functional impact of cell-intrinsic mutational changes, methodologies to understand non-cell autonomous interactions are largely lacking.Evolutionary Game Theory (EGT) is one of the main frameworks to understand the dynamics that drive frequency changes in interacting competing populations with different phenotypic strategies. However, despite a few notable exceptions, the use of EGT to understand evolutionary dynamics in the context of evolving tumors has been largely confined to theoretical studies. In order to apply EGT towards advancing our understanding of evolving tumor populations, we decided to focus on the context of the emergence of resistance to targeted therapies, directed against EML4-ALK fusion gene in lung cancers, as clinical responses to ALK inhibitors represent a poster child of limitations, posed by evolving resistance. To this end, we have examined competitive dynamics between differentially labelled therapy-naïve tumor cells, cells with cell-intrinsic resistance mechanisms, and cells with cell-extrinsic resistance, mediated by paracrine action of hepatocyte growth factor (HGF), within in vitro game assays in the presence or absence of front-line ALK inhibitor alectinib. We found that producers of HGF were the fittest in every pairwise game, while also supporting the proliferation of therapy-naïve cells. Both selective advantage of these producer cells and their impact on total population growth was a linearly increasing function of the initial frequency of producers until eventually reaching a plateau. Resistant cells did not significantly interact with the other two phenotypes. These results provide insights on reconciling selection driven emergence of subpopulations with cell non-cell autonomous resistance mechanisms, with lack of evidence of clonal dominance of these subpopulations. Further, our studies elucidate mechanisms for co-existence of multiple resistance strategies within evolving tumors. This manuscript serves as a technical report and will be followed up with a research paper in a different journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.