Double Laplace transform method is applied to find exact solutions of linear/nonlinear space-time fractional telegraph equations in terms of Mittag-Leffler functions subject to initial and boundary conditions. Furthermore, we give illustrative examples to demonstrate the efficiency of the method.
In this article, we use double Laplace transform method to find solution of general linear fractional partial differential equation in terms of Mittag-Leffler function subject to the initial and boundary conditions. The efficiency of the method is illustrated by considering fractional wave and diffusion equations, Klein-Gordon equation, Burger’s equation, Fokker-Planck equation, KdV equation, and KdV-Burger’s equation of mathematical physics.
In this article, the method based on double Laplace transform in combination with new iterative method is used to solve general nonlinear partial differential equation subject to the initial and boundary conditions. The effectiveness of the method is illustrated with examples of nonlinear dissipative wave equation, KdV equations, nonlinear heat equation and Gas-Dynamic equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.