Small granules of horseshoe crab hemocytes contain two known major antimicrobial substances, tachyplesin and big defensin (S5), and at least five protein components (S1 to S6), with unknown functions. In the present study, we examined the biological properties and primary structure of a small granular component S2, named tachycitin. This component was purified from the acid extract of hemocyte debris by two steps of chromatography. The purified tachycitin was a single chain protein with an apparent M(r) = 8,500 on Tricine-SDS-polyacrylamide gel electrophoresis. Ultracentrifugation analysis revealed tachycitin to be present in monomer form in solution. Tachycitin inhibited the growth of both Gram-negative and -positive bacteria, and fungi, with a bacterial agglutinating property. Moreover, tachycitin and big defensin acted synergistically in antimicrobial activities. The amino acid sequence and intrachain disulfide bonds of tachycitin were determined by amino acid and sequence analyses of peptides produced by enzymatic cleavages. The mature tachycitin consisted of 73 amino acid residues containing five disulfide bonds with no N-linked sugar. A cDNA coding for tachycitin was isolated from a hemocyte cDNA library. The open reading frame coded for an NH2-terminal signal sequence followed by the mature peptide and an extension sequence of -Gly-Arg-Lys at the COOH-terminus, which is a putative amidating signal. The COOH-terminal threonine amide released after digestion of tachycitin with lysylendopeptidase was identified. The NH2-terminal 28 residues of tachycitin shows sequence homology to a part of chitin-binding regions found in antifungal chitin-binding peptides, chitin-binding lectins, and chitinases, all of which have been isolated from plants. Tachycitin showed a specific binding to chitin but did not bind with the polysaccharides cellulose, mannan, xylan, and laminarin. Tachycitin may represent a new class of chitin-binding protein family in animals.
Antimicrobial peptides, named tachystatins A, B, and C, were identified from hemocytes of the horseshoe crab Tachypleus tridentatus. Tachystatins exhibited a broad spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria and fungi. Of these tachystatins, tachystatin C was most effective. Tachystatin A is homologous to tachystatin B, but tachystatin C has no significant sequence similarity to tachystatins A and B. Tachystatins A and B showed sequence similarity to -agatoxin-IVA of funnel web spider venom, a potent blocker of voltage-dependent calcium channels. However, they exhibited no blocking activity of the P-type calcium channel in rat Purkinje cells. Tachystatin C also showed sequence similarity to several insecticidal neurotoxins of spider venoms. Tachystatins A, B, and C bound significantly to chitin. A causal relationship was observed between chitin binding activity and antifungal activity. Tachystatins caused morphological changes against a budding yeast, and tachystatin C had a strong cell lysis activity. The septum between mother cell and bud, a chitin-rich region, was stained by fluorescencelabeled tachystatin C, suggesting that the primary recognizing substance on the cell wall is chitin. As horseshoe crab is a close relative of the spider, tachystatins and spider neurotoxins may have evolved from a common ancestral peptide, with adaptive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.