This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Background Ballet dancers are a risk group for body image (BI) distortion, dissatisfaction and eating disorders (ED), but few studies have investigated these aspects in amateur adult practitioners. This study aimed to evaluate if amateur female adult classical ballet dancers presented different BI and behaviors for ED than gym users and sedentary women. Methods This is a cross-sectional study where classical ballet dancers (n = 19) were compared to gym users (n = 19) and sedentary women (n = 19). Body mass index (BMI) was assessed, and a figure rating scale was applied to assess BI distortion/dissatisfaction. The body shape questionnaire (BSQ) was used to measure BI concern. The eating attitudes test (EAT-26) and the bulimic investigatory test, Edinburgh (BITE) were used for behaviors toward anorexia and bulimia. Results BMI was significantly lower in ballet dancers than gym users and sedentary women (F, p = .04). BI distortion did not differ among the studied groups. BI dissatisfaction was lower (X2, p = .041) in ballet dancers (75.0%) and gym users (70.6%) compared to sedentary women (100%). Correspondence analysis showed ballet dancers were mostly not concerned with BI, which was not observed among the other groups. The EAT-26 did not differ between the studied groups. The BITE score was lower (Tukey’s post hoc test, p = .005) in the ballet dancers [mean 5.3 (5.6)] compared to the sedentary women [mean 10.9 (4.8)]. Conclusions Data suggest that amateur classical ballet practicing is associated to better BI and fewer behaviors for ED in the studied population. The lower BMI in ballet dancers might explain these findings, and further studies should explore these associations.
Introduction In sports related to low body weight, such as classical ballet, the assessment of body composition is important for monitoring performance and health status. This study aimed to cross-validate anthropometry and bioelectrical impedance (BIA) predictive equations for estimating body composition of non-professional classical ballet dancers, using dual-energy-X-ray absorptiometry (DXA) as a reference method. Materials and methods Thirty-seven female non-professional classical dancers (median age of 19 years), at intermediate/advanced level, were evaluated in a cross-sectional study. Body composition was evaluated by DXA, anthropometry and tetrapolar BIA. Twenty different predictive equations of anthropometry (n = 8) and BIA (n = 12) were used to estimate Body Fat (BF) and Fat-Free Mass (FFM), testing their validity against DXA using the Bland-Altman statistics. Results For BF estimated by anthropometry equations, just one equation showed agreement with DXA (r = 0.852, p < 0.0005; p = 0.600 for one sample T-test). According to the Bland-Altman analysis, this equation also showed validity, with the absence of proportional bias. Regarding the predictive BIA equations tested, none were valid for our study group. Conclusion Only one of the anthropometric equations, the one proposed by Durnin and Womerley (1974), but none of the BIA equations analyzed, was valid for the evaluation of body composition of the studied classical dancers. Our results emphasize the importance of previous cross-validation of existing equations or the development of specific equations for body composition assessment in specific populations.
Background In vivo and in vitro studies have shown that Se has an insulin-mimetic action associated with its antioxidant activity. Other studies, in turn, suggest that high Se doses and high selenoprotein expression interfere with insulin signaling. This study aims to evaluate the effects of Se supplementation on glycemic control markers in healthy rodents. Methods The protocol was developed according to the Preferred Reporting Items for Systematic Review and Metaanalysis Protocol (PRISMA-P) and was published in the International Prospective Register of Systematic Reviews database (PROSPERO; CRD4202121201142019119181). Experimental, randomized, or non-randomized studies of healthy rodents models will be included. All forms of supplemented Se will be considered, including organic, inorganic, and synthetic compounds, selenium-enriched yeasts, zerovalent Se nanoparticles, and selenized polysaccharides. Fasting blood glucose will be considered the primary outcome. Homeostatic model assessment, plasma and erythrocyte Se concentration, GPX activity, SELENOP concentration, and other Se biomarkers will be considered secondary outcomes. EMBASE, Scopus, Pubmed/Medline, Web of Science, and CINAHL will be searched for articles published with no language restrictions. Two reviewers will independently conduct the search and selection of articles, data extraction, and quality analysis. The risk of bias and methodological quality analyses of the included studies will be performed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) and Collaborative Approach to Meta-Analysis and Review (CAMARADES) tools, respectively. The results will be presented as a narrative synthesis according to the Synthesis Without Meta-analysis (SWiM) Reporting Guideline. Meta-analyses will be conducted where appropriate using random-effects models. Discussion The review may clarify the interaction between different forms of supplemented Se and glycemic control in rodents models. The results will provide evidence that will help select doses and forms of Se to administer in clinical trials while according to impact on the glycemic control while elucidating mechanisms of Se metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.