The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as "cryptic domestication," given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East.Asian colonization | mtDNA | phylogeography
Conventional wisdom is that the MAI and FAI are stable in the solution, but actually they are not. We demonstrated that the MAI first deprotonated to form methylamine (MA), and then MA reacted with FAI to form two condensation products N-methyl FAI and N, N 0 -dimethyl FAI. Moreover, triethyl borate was introduced to stabilize the perovskite precursor solution, which significantly reduced the impure phase in the perovskite film and enhanced the device performance and reproducibility.
Inorganic CsPbI 3 is promising to enhance the thermal stability of perovskite solar cells. The dimethylamine iodide (DMAI) derived method is currently the most efficient way to achieve high efficiency, but the effect of DMAI has not been fully explained. Herein, the chemical composition and phase evolution of the mixed DMAI/CsPbI 3 layer during thermal treatment has been studied. The results demonstrate that, with the common DMAI/CsI/PbI 2 recipe in DMSO solvent, a mixed perovskite DMA 0.15 Cs 0.85 PbI 3 is first formed through a solid reaction between DMAPbI 3 and Cs 4 PbI 6 . Further thermal treatment will transform the mixed perovskite phase directly to γ-CsPbI 3 and then spontaneously convert to δ-CsPbI 3 . It has been also demonstrated that the DMA 0.15 Cs 0.85 PbI 3 phase is thermodynamically stable and shows a bandgap of 1.67 eV, which is narrower than 1.73 eV of γ-CsPbI 3 . The device efficiency of the mixed DMA 0.15 Cs 0.85 PbI 3 perovskite is therefore highly improved in comparison with the pure inorganic γ-CsPbI 3 perovskite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.