Fog computing has been prioritized over cloud computing in terms of latency-sensitive Internet of Things (IoT) based services. We consider a limited resource-based fog system where real-time tasks with heterogeneous resource configurations are required to allocate within the execution deadline. Two modules are designed to handle the real-time continuous streaming tasks. The first module is task classification and buffering (TCB), which classifies the task heterogeneity using dynamic fuzzy c-means clustering and buffers into parallel virtual queues according to enhanced least laxity time. The second module is task offloading and optimal resource allocation (TOORA), which decides to offload the task either to cloud or fog and also optimally assigns the resources of fog nodes using the whale optimization algorithm, which provides high throughput. The simulation results of our proposed algorithm, called whale optimized resource allocation (WORA), is compared with results of other models, such as shortest job first (SJF), multi-objective monotone increasing sorting-based (MOMIS) algorithm, and Fuzzy Logic based Real-time Task Scheduling (FLRTS) algorithm. When 100 to 700 tasks are executed in 15 fog nodes, the results show that the WORA algorithm saves 10.3% of the average cost of MOMIS and 21.9% of the average cost of FLRTS. When comparing the energy consumption, WORA consumes 18.5% less than MOMIS and 30.8% less than FLRTS. The WORA also performed 6.4% better than MOMIS and 12.9% better than FLRTS in terms of makespan and 2.6% better than MOMIS and 4.3% better than FLRTS in terms of successful completion of tasks.
The tremendous expansion of the Internet of Things (IoTs) has generated an enormous volume of near and remote sensing data, which is increasing with the emergence of new solutions for sustainable environments. Cloud computing is typically used to help resource-constrained IoT sensing devices. However, the cloud servers are placed deep within the core network, a long way from the IoT, introducing immense data transactions. These transactions require heavy electricity consumption and release harmful CO2 to the environment. A distributed computing environment located at the edge of the network named fog computing has been promoted to reduce the limitation of cloud computing for IoT applications. Fog computing potentially processes real-time and delay-sensitive data, and it reduces the traffic, which minimizes the energy consumption. The additional energy consumption can be reduced by implementing an energy-aware task scheduling, which decides on the execution of tasks at cloud or fog nodes on the basis of minimum completion time, cost, and energy consumption. In this paper, an algorithm called energy-efficient makespan cost-aware scheduling (EMCS) is proposed using an evolutionary strategy to optimize the execution time, cost, and energy consumption. The performance of this work is evaluated using extensive simulations. Results show that EMCS is 67.1% better than cost makespan-aware scheduling (CMaS), 58.79% better than Heterogeneous Earliest Finish Time (HEFT), 54.68% better than Bees Life Algorithm (BLA) and 47.81% better than Evolutionary Task Scheduling (ETS) in terms of makespan. Comparing the cost of the EMCS model, it uses 62.4% less cost than CMaS, 26.41% less than BLA, and 6.7% less than ETS. When comparing energy consumption, EMCS consumes 11.55% less than CMaS, 4.75% less than BLA and 3.19% less than ETS. Results also show that with an increase in the number of fog and cloud nodes, the balance between cloud and fog nodes gives better performance in terms of makespan, cost, and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.