Mammography-based screening has helped reduce the breast cancer mortality rate, but has also been associated with potential harms due to low specificity, leading to unnecessary exams or procedures, and low sensitivity. Digital breast tomosynthesis (DBT) improves on conventional mammography by increasing both sensitivity and specificity and is becoming common in clinical settings. However, deep learning (DL) models have been developed mainly on conventional 2D full-field digital mammography (FFDM) or scanned film images. Due to a lack of large annotated DBT datasets, it is difficult to train a model on DBT from scratch. In this work, we present methods to generalize a model trained on FFDM images to DBT images. In particular, we use average histogram matching (HM) and DL fine-tuning methods to generalize a FFDM model to the 2D maximum intensity projection (MIP) of DBT images. In the proposed approach, the differences between the FFDM and DBT domains are reduced via HM and then the base model, which was trained on abundant FFDM images, is fine-tuned. When evaluating on image patches extracted around identified findings, we are able to achieve similar areas under the receiver operating characteristic curve (ROC AUC) of ∼ 0.9 for FFDM and ∼ 0.85 for MIP images, as compared to a ROC AUC of ∼ 0.75 when tested directly on MIP images.
Sparse representation and low-rank matrix decomposition approaches have been successfully applied to several computer vision problems. They build a generative representation of the data, which often requires complex training as well as testing to be robust against data variations induced by nuisance factors. We introduce the invariant components, a discriminative representation invariant to nuisance factors, because it spans subspaces orthogonal to the space where nuisance factors are defined. This allows developing a framework based on geometry that ensures a uniform inter-class separation, and a very efficient and robust classification based on simple nearest neighbor. In addition, we show how the approach is equivalent to a local metric learning, where the local metrics (one for each class) are learned jointly, rather than independently, thus avoiding the risk of overfitting without the need for additional regularization. We evaluated the approach for face recognition with highly corrupted training and testing data, obtaining very promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.