Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
28"Oil-polluted sediment bioremediation depends on both physicochemical and 29" biological parameters, but the effect of the latter cannot be evaluated without the optimization 30" of the former. We aimed in optimizing the physicochemical parameters related to 31" biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to 32" oil-polluted sediment, in order to determine the added effect of bioaugmentation by four 33" allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the 34" indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and 35"hydrolytic activity, bacterial population sizes and bacterial community dynamics, 36"characterizing the dominant taxa through time and at each treatment. We observed no 37" significant differences in total degradation, but increased ecotoxicity between the different 38" treatments receiving both biostimulation and bioaugmentation and the biostimulated-only 39" control. Moreover, the added allochthonous bacteria quickly perished and were rarely 40" detected, their addition inducing minimal shifts in community structure although it altered the 41" distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that 42" biodegradation was mostly performed by the autochthonous populations while 43" bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our 44" results indicate that when environmental conditions are optimized, the indigenous 45" microbiome at a polluted site will likely outperform any allochthonous consortium. 46"47"
Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.
Optimized denaturing gradient gel electrophoresis (DGGE) fingerprinting and real-time PCR were performed to identify and quantify the potential hepatotoxic microcystin- and nodularin-producing cyanobacteria present in freshwater samples collected during different seasons at three different sites from the Nile River Delta. The combined use of molecular gene markers (targeting the aminotransferase domain of the hepatotoxin synthetase modules and the 16S rRNA gene) and light microscopy demonstrated the dominance of different freshwater Microcystis phylotypes, including the potential hepatotoxin producers M. wesenbergii and M. aeruginosa, several Synechococcus and Cyanobium phylotypes, as well as the presence of Nodularia spumigena and Cylindrospermopsis raciborskii in the samples "collected during summer 2006 and winter 2007". Certain seasonal changes (summer and winter) in Microcystis microdiversity were detected. Real-time PCR revealed no difference in the quantities of potential hepatotoxin-producing cyanobacterial communities between summer and winter, but did show differences between the three sampling sites investigated. The expression of the aminotransferase domain analyzed by DGGE fingerprinting demonstrated that all Microcystis phylotypes present in the samples might have been active at the time of the sampling. Statistical analysis showed a significant effect of TP, and not TN, on the relative abundance of the potentially hepatotoxic cyanobacterial community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.