Evapotranspiration (ET) is a vital constituent of the hydrologic cycle. Researching changes in ET is necessary for understanding variability in the hydrologic cycle. Although some studies have clarified the changes and influencing factors of ET on a regional or global scale, these variables are still unclear for different land cover types due to the range of possible water evaporation mechanisms and conditions. In this study, we first investigated spatiotemporal trends of ET in different land cover types in the Xiliao River Plain from 2000 to 2019. The correlation between meteorological, NDVI, groundwater depth, and topographic factors and ET was compared through spatial superposition analysis. We then applied the ridge regression model to calculate the contribution rate of each influencing factor to ET for different land cover types. The results revealed that ET in the Xiliao River Plain has shown a continuously increasing trend, most significantly in cropland (CRO). The correlation between ET and influencing factors differed considerably for different land cover types, even showing an opposite result between regions with and without vegetation. Only precipitation (PRCP) and NDVI had a positive impact on ET in all land cover types. In addition, we found that vegetation can deepen the limited depth of land absorbing groundwater, and the influence of topographic conditions may be mainly reflected in the water condition difference caused by surface runoff. The ridge regression model eliminates multicollinearity among influencing factors; R2 in all land cover types was over 0.6, indicating that it could be used to effectively quantify the contribution of various influencing factors to ET. According to the results of our model calculations, NDVI had the greatest impact on ET in grass (GRA), cropland (CRO), paddy (PAD), forest (FOR), and swamp (SWA), while PRCP was the main influencing factor in bare land (BAR) and sand (SAN). These findings imply that we should apply targeted measures for water resources management in different land cover types. This study emphasizes the importance of comprehensively considering differences among various hydrologic cycles according to land cover type in order to assess the contributions of influencing factors to ET.
Mineralized indicator minerals are an important geological and mineral exploration indicator. Rapid extraction of mineralized indicator minerals from hyperspectral remote sensing images using ensemble learning model has important geological significance for mineral resources exploration. In this study, two mineralized indicator minerals, limonite and chlorite, exposed at the surface of Qinghai Gouli area were used as the research objects. Sparrow search algorithm (SSA) was combined with random forest (RF) and gradient boosting decision tree (GBDT) ensemble learning models, respectively, to construct hyperspectral mineralized indicative mineral information extraction models in the study area. Youden index (YD) and ore deposit coincidence (ODC) were applied to evaluate the performance of different models in the mineral information extraction. The results indicate that the optimization of SSA parameter algorithm is obvious, and the accuracy of both the integrated learning models after parameter search has been improved substantially, among which the SSA-GBDT model has the best performance, and the YD and the ODC can reach 0.661 and 0.727, respectively. Compared with traditional machine learning model, integrated learning model has higher reliability and stronger generalization performance in hyperspectral mineral information extraction and application, with YD greater than 0.6. In addition, the distribution of mineralized indicative minerals extracted by the ensemble learning model after parameter optimization is basically consistent with the distribution pattern of the fracture tectonic spreading characteristics and known deposits (points) in the area, which is in line with the geological characteristics of mineralization in the study area. Therefore, the classification and extraction model of minerals based on hyperspectral remote sensing technology, combined with the SSA optimization algorithm and ensemble learning model, is an efficient mineral exploration method.
Lithology classification is important in mineral resource exploration, engineering geological exploration, and disaster monitoring. Traditional laboratory methods for the qualitative analysis of rocks are limited by sampling conditions and analytical techniques, resulting in high costs, low efficiency, and the inability to quickly obtain large-scale geological information. Hyperspectral remote sensing technology can classify and identify lithology using the spectral characteristics of rock, and is characterized by fast detection, large coverage area, and environmental friendliness, which provide the application potential for lithological mapping at a large regional scale. In this study, ZY1-02D hyperspectral images were used as data sources to construct a new two-layer extreme gradient boosting (XGBoost) lithology classification model based on the XGBoost decision tree and an improved greedy search algorithm. A total of 153 spectral bands of the preprocessed hyperspectral images were input into the first layer of the XGBoost model. Based on the tree traversal structural characteristics of the leaf nodes in the XGBoost model, three built-in XGBoost importance indexes were split and combined. The improved greedy search algorithm was used to extract the spectral band variables, which were imported into the second layer of the XGBoost model, and the bat algorithm was used to optimize the modeling parameters of XGBoost. The extraction model of rock classification information was constructed, and the classification map of regional surface rock types was drawn. Field verification was performed for the two-layer XGBoost rock classification model, and its accuracy and reliability were evaluated based on four indexes, namely, accuracy, precision, recall, and F1 score. The results showed that the two-layer XGBoost model had a good lithological classification effect, robustness, and adaptability to small sample datasets. Compared with the traditional machine learning model, the two-layer XGBoost model shows superior performance. The accuracy, precision, recall, and F1 score of the verification set were 0.8343, 0.8406, 0.8350, and 0.8157, respectively. The variable extraction ability of the constructed two-layer XGBoost model was significantly improved. Compared with traditional feature selection methods, the GREED-GFC method, when applied to the two-layer XGBoost model, contributes to more stable rock classification performance and higher lithology prediction accuracy, and the smallest number of extracted features. The lithological distribution information identified by the model was in good agreement with the lithology information verified in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.