In Laurencia dendroidea, halogenated secondary metabolites are primarily located in the vacuole named the corps en cerise (CC). For chemical defence at the surface level, these metabolites are intracellularly mobilised through vesicle transport from the CC to the cell periphery for posterior exocytosis of these chemicals. The cell structures involved in this specific vesicle traffic as well as the cellular structures related to the positioning and anchoring of the CC within the cell are not well known. Here, we aimed to investigate the role of cytoskeletal elements in both processes. Cellular and molecular assays were conducted to i) determine the ultrastructural apparatus involved in the vesicle traffic, ii) localise cytoskeletal filaments, iii) evaluate the role of different cytoskeletal filaments in the vesicle transport, iv) identify the cytoskeletal filaments responsible for the positioning and anchoring of the CC, and v) identify the transcripts related to cytoskeletal activity and vesicle transport. Our results show that microfilaments are found within the connections linking the CC to the cell periphery, playing an essential role in the vesicle traffic at these connections, which means a first step of the secondary metabolites transport to the cell surface. After that, the microtubules work in the positioning of the vesicles along the cell periphery towards specific regions where exocytosis takes place, which corresponds to the second step of the secondary metabolites transport to the cell surface. In addition, microtubules are involved in anchoring and positioning the CC to the cell periphery. Transcriptomic analysis revealed the expression of genes coding for actin filaments, microtubules, motor proteins and cytoskeletal accessory proteins. Genes related to vesicle traffic, exocytosis and membrane recycling were also identified. Our findings show, for the first time, that actin microfilaments and microtubules play an underlying cellular role in the chemical defence of red algae.
Polissacarídeos de parede celular da alga vermelha Laurencia microcladia foram isolados por tratamento alcalino (KOH 1M, 10 mg NaBH 4 , temperatura ambiente), produzindo duas subfrações por neutralização (AcOH, pH=5.2) e precipitação com EtOH, respectivamente A e B. Eletroforese em papel revelou a existência de apenas um polissacarídeo por fração. O espectro FT-IR de ambos polissacarídeos mostraram indícios de COH (OH: 3400-3300 cm-, CO: 1260-1000 cm-) e de CHC (1300-1000 cm-), típicos em polímeros de parede celular de algas. Um derivado Nglicosil (1640-1560 cm-) e baixo conteúdo ácido (0.34 mol%) são traços estruturais encontrados, ao passo que proteínas não foram encontradas. A atividade antimitótica foi observada
Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3—aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane—DI; ethyl acetate—EA and methanol—ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.
Approximately half of the Padina (Dictyotales, Phaeophyceae) species mineralize aragonite needles over the adaxial thallus surface, where mineral bands are interspersed with nonmineralized regions along the thallus from the apical to basal end. However, this calcification pattern and the related algal properties are not well understood. Therefore, this work was performed to elucidate a potential role of cell walls in the inhibition/induction of mineralization in the brown alga Padina gymnospora. In a comparison of specific thallus regions, differences were identified in the cellulose distribution, microfibrils arrangement and thickness, distribution and abundance of phenolic substances, and physical differences among the surfaces of the thallus (deformation, adhesion, topography, and nano-rugosity). In vitro mineralization assays indicated that phenolic substances are strong modulators of calcium carbonate crystals growth. In addition, de novo mineralization assays over cell wall surfaces that were used as templates, even without cellular activity, indicated that the cell wall remains a key factor in the induction/inhibition of mineralization. Overall, the current findings indicate a strong correlation between the physico-chemical and structural properties of the cell wall and the alternation pattern of the mineralization bands over the thallus of P. gymnospora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.