Bioenergy is one of the alternatives to reduce the dependence of global energy on fossil fuels. The short rotation coppice (SRC) of eucalypt species appears as an interesting option for forest biomass production in a short time. However, the harvesting of whole trees (included the crown) in SRC systems has implications on sustainable land use. More information is required on the increase of biomass as renewable energy resource to achieve the sustainability of these crops. The main objective of this research was to evaluate the sustainable use of biomass from very high-density eucalypt plantations, managed at tropical conditions for bioenergy. To accomplish this objective, the tree was fractionated into three fractions: stem, branches, and leaves, and there was determination of the dry matter, energy yield, and nutrients export. This experiment used a short rotation coppice, a hybrid clone of Eucalyptus urophylla  Eucalyptus grandis, of 2 years old. According to the results obtained, the density planting and fertilization levels have a greater influence on the dry matter yield, energy yield, and nutrient exports. The higher density planting reaches mean values of 30.9 tonnes of dry matter per hectare (t DM ha À1) and 743.3 GJ ha À1. Considering the biomass yield and nutrients export of short rotation coppice of eucalypt, the higher density planting with the lower dose of fertilization is more indicative of sustainable use. The leaves have an important participation in nutrients export and should be retained in the soil of forest.
In this paper, the drying of whole-tree chip (WTC) storage from young Eucalyptus plantation managed at short-rotation coppice in Brazil was studies. The biomass was converted from high-density energy plantations of Eucalyptus grandis at 2 years old into four piles. Wood chip particles had 5, 15, and 30 mm length were disposed on a paved surface to evaluate the effect on the chip drying. An additional covered pile (30-mm wood chip) was installed to evaluate the effect of coverage condition. The non-ventilated and uncovered piles were not affected by WTC length, and the final moisture content (MC) was 48.4 e53.5% and temperature inside the piles (storage temperature) was approximately 36 C. However, the coverage showed beneficial effect on drying wood chip process, collaborating to keep the MC lower than 35%, conventionally recommended for energy purposes. Among storage systems studied, the higher daily moisture content was assigned to covered pile, about 0.197% day À1 during the first 30 days. This paper can be used as a reference for further studies with wood chip pile storage at tropical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.