In this paper we argue that in recent literature on mechanistic explanations, authors tend to conflate two distinct features that mechanistic models can have or fail to have: plausibility and richness. By plausibility, we mean the probability that a model is correct in the assertions it makes regarding the parts and operations of the mechanism, i.e., that the model is correct as a description of the actual mechanism. By richness, we mean the amount of detail the model gives about the actual mechanism. First, we argue that there is at least a conceptual reason to keep these two features distinct, since they can vary independently from each other: models can be highly plausible while providing almost no details, while they can also be highly detailed but plainly wrong. Next, focusing on Craver's continuum of how-possibly, to how-plausibly, to how-actually models, we argue that the conflation of plausibility and richness is harmful to the discussion because it leads to the view that both are necessary for a model to have explanatory power, while in fact, richness is only so with respect to a mechanism's activities, not its entities. This point is illustrated with two examples of functional models
Although it is now widely accepted that in science, non-cognitive values play a role, it is still debated whether this has implications for its objectivity. It seems that the task of philosophers here is twofold: to ºesh out what kinds of non-cognitive values play what kinds of roles, and to evaluate the implications for objectivity. I attempt to contribute to both tasks by introducing the value of egalitarianism, and showing how this non-cognitive value shapes three alternative explanations of the Movius Line. It is argued that although these explanations are motivated by egalitarianism, they are nevertheless objective.
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.-Users may download and print one copy of any publication from the public portal for the purpose of private study or research-You may not further distribute the material or use it for any profit-making activity or commercial gain-You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.