We study four-point functions of critical percolation in two dimensions, and more generally of the Potts model. We propose an exact ansatz for the spectrum: an infinite, discrete and non-diagonal combination of representations of the Virasoro algebra. Based on this ansatz, we compute four-point functions using a numerical conformal bootstrap approach. The results agree with Monte-Carlo computations of connectivities of random clusters.
Abstract:We determine the spectrum and correlation functions of Liouville theory with a central charge less than (or equal) one. This completes the definition of Liouville theory for all complex values of the central charge. The spectrum is always spacelike, and there is no consistent timelike Liouville theory. We also study the non-analytic conformal field theories that exist at rational values of the central charge. Our claims are supported by numerical checks of crossing symmetry. We provide Python code for computing Virasoro conformal blocks, and correlation functions in Liouville theory and (generalized) minimal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.